The wave takes 11.3 s to cover a distance of 26.5 m, so its speed is:

The distance between two consecutive crests is 3 m, and this corresponds to the wavelength of the wave. To find its frequency, we can use the relationship between the speed v, the wavelength

and the frequency f:
Average speed = (total distance covered) / (time to cover the distance)
Total distance = (77km + 66km) = 143 kilometers
Time to cover the distance = 2 hours
Average speed = (143 km) / (2 hours) = 71.5 km per hour
Answer:
a= 92. 13 m/s²
Explanation:
Given that
Amplitude ,A= 0.165 m
The maximum speed ,V(max) = 3.9 m/s
We know that maximum velocity in the SHM given as
V(max) = ω A
ω=Angular speed
A=Amplitude

ω=23.63 rad/s
The maximum acceleration given as
a = ω² A
a= (23.63)² x 0.165 m/s²
a= 92. 13 m/s²
Therefore the maximum magnitude of the acceleration will be 92. 13 m/s².