<span>So we want to know which statement is true for the body of mass m=2000kg that is lifted to a height of h=15m in t=15 s. Lets calculate each of the following: Gravity force on the body is F=m*g=2000*9.81=19620 N so a is FALSE. Potential energy of the body when it is lifted to the height of 15 m is Ep=m*g*h=2000*9.81*15=294300 J so b is FALSE. Work to lift the body is: W=Fg*h=2000*9.81*15= Ep=294300 J so c is FALSE. Power P=W/t=294300/15=19620 W So d is TRUE. </span>
Answer:
Work done on an object is equal to
FDcos(angle).
So, naturally, if you lift a book from the floor on top of the table you do work on it since you are applying a force through a distance.
However, I often see the example of carrying a book through a horizontal distance is not work. The reasoning given is this: The force you apply is in the vertical distance, countering gravity and thus not in the direction of motion.
But surely you must be applying a force (and thus work) in the horizontal direction as the book would stop due to air friction if not for your fingers?
Is applying a force through a distance only work if causes an acceleration? That wouldn't make sense in my mind. If you are dragging a sled through snow, you are still doing work on it, since the force is in the direction of motion. This goes even if velocity is constant due to friction.
Explanation:
Answer:
juz taking points nvm no sry for u cos u too wasted point
Answer:
1 x 10¹⁷
Explanation:
Given data:
Radius of the earth = 6000km
Radius of an atom = 60pm
Now, how many orders is the radius of the earth larger than an atom
Solution:
To solve this problem, let us express both quantity as the same unit;
1000m = 1km
6000km = 6000 x 10³m = 6 x 10⁶m
60pm;
1 x 10⁻¹²m = 1pm
60pm = 60 x 1 x 10⁻¹²m = 6 x 10⁻¹¹m
Now;
The order:
= 1 x 10¹⁷