Molar mass = 305.42 g/mol
C = ( 12 x 18 / 305.42 ) x 100 => 70.72 % of C
H = ( 1 x 27 / 305.42 ) x 100 => 8.84 % of H
N = ( 14 x 1 / 305.42 ) x 100 => 4.58 % of N
O = ( 16 x 3 / 305.42) x 100 => 15.71% of O
hope this helps!
<span>The correct option is C. The concentration of phosphate inside the cytosol is already greater than the concentration of phosphate in the surrounding fluid, yet, the cell still want to move more phosphate into the cell. To do this, energy is needed to move the phosphate ions against the concentration gradient, so the type of transportation requires is ACTIVE TRANSPORT.</span><span />
One end has a specific binding site for a particular amino acid and the other end the sequence that can pair with a codon, called an anticodon. The DNA code is translated into messenger RNA when the RNA polymerase binds to it and makes the mRNA copy.
277.79 atm is the calculated gas pressure.
The ideal gas is a fictitious concept used to study how real gases behave by comparing them to their deviations. The pressure-temperature rules are followed by an ideal gas.
177 atm is the initial pressure. The starting temperature is 298 K (25 °C = 25 + 273 °C).
195°C = 195+273
= 468K is the final temperature.
The pressure temperature relation illustrated below can be used to get the final pressure.
P1/T1 = P2/T1
= P1T2/T1
= 177 atm 468 K /298 K
= 277.97 atm
The final pressure is therefore 277.97 atm.
Learn more about Pressure here-
brainly.com/question/4578923
#SPJ4
Most of the carbon is put away in sedimentary carbonates and kerogens, with the rest being spread between the sea, the air, biomass, for example, plants and creatures, and petroleum products
<u>Explanation</u>:
- The carbon cycle is the procedure where carbon goes from the surrounding into living beings and to the Earth and then again goes into the air. Plants take carbon dioxide from the air and use it for food preparation. Creatures at that point eat the nourishment and carbon is put away in their bodies or discharged as CO2 through the breath.
-
Most of the carbon is put away in sedimentary carbonates and kerogens, with the rest being spread between the sea, the air, biomass, for example, plants and creatures, and petroleum products. This is known as carbon storage.
-
For instance, carbon, a fundamental component in natural particles, is preserved as it is moved from inorganic carbon in a biological system to natural atoms in living life forms of the biological system and back as inorganic carbon to the earth.