We can write the balanced equation for the synthesis reaction as
H2(g) + Cl2(g) → 2HCl(g)
We use the molar masses of hydrogen chloride gas HCl and hydrogen gas H2 to calculate for the mass of hydrogen gas H2 needed:
mass of H2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol H2 / 2 mol HCl) *
(2.02 g H2 / 1 mol H2)
= 4.056 g H2
We also use the molar masses of hydrogen chloride gas HCl and chlorine gas CL2 to calculate for the mass of hydrogen gas H2:
mass of CL2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol Cl2 / 2 mol HCl) *
(70.91 g Cl2 / 1 mol Cl2)
= 142.4 g Cl2
Therefore, we need 4.056 grams of hydrogen gas and 142.4 grams of chlorine gas to produce 146.4 grams of hydrogen chloride gas.
Answer:
You may be referring to the gas that makes up 21% of the earth's atmosphere, which is oxygen.
Explanation:
According to NASA, the gases in Earth's atmosphere include:
Nitrogen — 78 percent
Oxygen — 21 percent
Argon — 0.93 percent
Carbon dioxide — 0.04 percent
(Trace amounts of neon, helium, methane, krypton and hydrogen, as well as water vapor)
Answer:
<em>Option A. It was delivered by comets that crashed into Earth's surface.</em>
Explanation:
<em><u>Uranium (U) is a chemical element with atomic number 92.</u></em>
<em />
<em>For many years, a large number of scientists have been studying the abundance and origin of the isotopes of uranium in Earth</em>. <u>According to some theories, the Earth's uranium was produced in one or more supernovae</u> (an explosive brightening of a star), in wich, the main process consists in the rapid capture of neutrons by seed nuclei at great rates. <u>Another theory proposes that uranium is created during the merger of two neutron stars</u> (neutron stars are very dense), because, when such dense bodies come closer together the gravitational force cause them to merge, producing huge amounts of hevy metals like uranium.
<u><em>Many analyses have been made of the uranium in rocks of the Earth. These measurements shows that the abundance of uranium is bigger in the crust and upper mantle of the Earth</em></u>.
So, knowing that Earth's uranium was produced through one of these processes, <u><em>the best answer is option A, the uranium was delivered by comets that crashed into Earth's surface.</em></u>
Have a nice day!
<span>The molecular mass of sodium oxide (Na2O) is A. 61.97894. The molecular mass of a molecule (Mr) is the sum of atomic masses of its atoms (Ar). The molecular mass of sodium oxide is: Mr(Na2O) = 2 * Ar (Na) + Ar(O). From the periodic table, Ar(Na) = 22.989769 and Ar(O) = 15.9994. The molecular mass of sodium oxide is: Mr(Na2O) = 2 * 22.989769 + 15.9994 = 45.979538 + 15.9994 = 61.97894.</span>