Answer:
Concentration, pressure, and temperature are the three factors that affect chemical equilibrium
Answer:
76.03 °C.
Explanation:
Equation:
C2H5OH(l) --> C2H5OH(g)
ΔHvaporization = ΔH(products) - ΔH (reactants)
= (-235.1 kJ/mol) - (-277.7 kK/mol)
= 42.6 kJ/mol.
ΔSvaporization = ΔS(products) - ΔS(reactants)
= 282.6 J/K.mol - 160.6 J/K.mol
= 122 J/K.mol
= 0.122 kJ/K.mol
Using gibbs free energy equation,
ΔG = ΔH - TΔS
ΔG = 0,
T = ΔH/ΔS
T = 42.6/0.122
= 349.18 K.
Coverting Kelvin to °C,
= 349.18 - 273.15
= 76.03 °C.
Answer:
0.4694 moles of CrCl₃
Explanation:
The balanced equation is:
Cr₂O₃(s) + 3CCl₄(l) → 2CrCl₃(s) + 3COCl₂(aq)
The stoichiometry of the equation is how much moles of the substances must react to form the products, and it's represented by the coefficients of the balanced equation. So, 1 mol of Cr₂O₃ must react with 3 moles of CCl₄ to form 2 moles of CrCl₃ and 3 moles of COCl₂.
The stoichiometry calculus must be on a moles basis. The compounds of interest are Cr₂O₃ and CrCl₃. The molar masses of the elements are:
MCr = 52 g/mol
MCl = 35.5 g/mol
MO = 16 g/mol
So, the molar mass of the Cr₂O₃ is = 2x52 + 3x35.5 = 210.5 g/mol.
The number of moles is the mass divided by the molar mass, so:
n = 49.4/210.5 = 0.2347 mol of Cr₂O₃.
For the stoichiometry:
1 mol of Cr₂O₃ ------------------- 2 moles of CrCl₃
0.2347 mol of Cr₂O₃----------- x
By a simple direct three rule:
x = 0.4694 moles of CrCl₃
Momentum = (mass) x (velocity) = (1,100) x (30) =
33,000
kg-m/sec due east
Atomic mass number is the number of protons and neutrons. Subtract 80-35=45 is the number of protons. Because the atom is neutrally charged, the number of protons must equal the number of electrons, so there are 45 electrons.