Yes yes you are totally right
Answer:
54.4 mol
Explanation:
the equation for complete combustion of butane is
2C₄H₁₀ + 13O₂ ---> 8CO₂ + 10H₂O
molar ratio of butane to CO₂ is 2:8
this means that for every 2 mol of butane that reacts with excess oxygen, 8 mol of CO₂ is produced
when 2 mol of C₄H₁₀ reacts - 8 mol of CO₂ is produced
therefore when 13.6 mol of C₄H₁₀ reacts - 8/2 x 13.6 mol = 54.4 mol of CO₂ is produced
therefore 54.4 mol of CO₂ is produced
Answer:
Option D. 4.02 kJ
Explanation:
A simple calorimetry problem
Q = m . C . ΔT
ΔT = Final T° - Initial T°
C = Specific heat capacity
m = mass
Let's replace the data
Q = 125 g . 2.42 J/g∘C . (34.8°C -21.5 °C)
Q= 4023.25 J
We must convert the answer to kJ
4023.25 J . 1kJ /1000 =4.02kJ
Answer is: ph value of pyridine solution is 9.1.
Chemical
reaction: C₅H₅N +
H₂O → C₅H₅NH⁺ + OH⁻.<span>
c(pyridine - C</span>₅H₅N)
= 0.115M.<span>
Kb(C</span>₅H₅N)
= 1.4·10⁻⁹.
[C₅H₅NH⁺] = [OH⁻] = x; equilibrium concentration.<span>
[</span>C₅H₅N] =
0.115 M - x.
Kb = [C₅H₅NH⁺] · [OH⁻] / [C₅H₅N].
1.4·10⁻⁹ = x² / (0.115 M -x)
Solve quadratic equation: x = [OH⁻] = 0.0000127 M.<span>
pOH = -log(0.0000127 M) = 4.9</span>
<span>pH = 14 - 4.9 = 9.1.</span>
<h2>
Answer:</h2>
In <u>Combination reaction</u>, two or more elements combined to form one compound of different properties.
- C(s) + O2(g) ⇢ CO2(g).
- H2(g) + O2(g) ⇢ H20(l).
In <u>Displacement reation</u>, the high reactive element displaces the low reactive element and formed compound of different properties.
- Fe(s) + CuSo4(aq) ⇢ FeSo4(aq) + Cu(s).
- AgNO3(aq) + Cu(s) ⇢ CuNO3(aq) + Ag(s).