Answer:
Compound Element
Definition: A compound contains atoms of different elements chemically combined together in a fixed ratio.
Definition: An element is a pure chemical substance made of same type of atom.
Elements and compounds are purely homogeneous substances and they have a constant composition throughout. Elements and compounds cannot be separated into their respective constituents by physical means. Compounds and mixtures are made up of different elements or different atoms.
Hopefully this helps you!!!!
Answer:
I screenshot and expained here
https://screenshot.best/A7QIKV.lnk
Explanation:
Answer:
2.765amu is the contribution of the X-19 isotope to the weighted average
Explanation:
The average molar mass is defined as the sum of the molar mass of each isotope times its abundance. For the unknown element X that has 2 isotopes the weighted average is defined as:
X = Mass X-19 * Abundance X-19 + MassX-21 * Abundance X-21
The contribution of the X-19 isotope is its mass (19.00 amu) times its abundance (14.55% = 0.1455). That is:
19.00amu * 0.1455 =
2.765amu is the contribution of the X-19 isotope to the weighted average
Answer : The expression for reaction quotient will be :
(1) ![Q_c=\frac{[SO_2][HF]^4}{[SF_4]}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BSO_2%5D%5BHF%5D%5E4%7D%7B%5BSF_4%5D%7D)
(2) ![Q_c=\frac{[O_2]^2[Xe]}{[XeF_2]}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BO_2%5D%5E2%5BXe%5D%7D%7B%5BXeF_2%5D%7D)
Explanation :
Reaction quotient
: It is defined as the measurement of the relative amounts of products and reactants present during a reaction at a particular time.
(1) The given balanced chemical reaction is,

In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted. So, the expression for reaction quotient will be :
![Q_c=\frac{[SO_2][HF]^4}{[SF_4]}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BSO_2%5D%5BHF%5D%5E4%7D%7B%5BSF_4%5D%7D)
(2) The given balanced chemical reaction is,
![2MoO_2(s)+XeF_2(g)\rightarrow 2MoF(l)+Xe(g)+2O_2(g)[/texIn this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted. So, the expression for reaction quotient will be :[tex]Q_c=\frac{[O_2]^2[Xe]}{[XeF_2]}](https://tex.z-dn.net/?f=2MoO_2%28s%29%2BXeF_2%28g%29%5Crightarrow%202MoF%28l%29%2BXe%28g%29%2B2O_2%28g%29%5B%2Ftex%3C%2Fp%3E%3Cp%3EIn%20this%20expression%2C%20only%20gaseous%20or%20aqueous%20states%20are%20includes%20and%20pure%20liquid%20or%20solid%20states%20are%20omitted.%20%20So%2C%20the%20expression%20for%20reaction%20quotient%20will%20be%20%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DQ_c%3D%5Cfrac%7B%5BO_2%5D%5E2%5BXe%5D%7D%7B%5BXeF_2%5D%7D)
Answer:
<h2>0.02 moles </h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
We have

We have the final answer as
<h3>0.02 moles</h3>
Hope this helps you