Answer:
The name of the products are CO2 = carbon dioxide and H2O = water. The type of reaction is a combustion reaction.
Explanation:
An environmental scientist studies the environment - you can see that in the beginning of the sentence :)
For an aqueous solution of MgBr2, a freezing point depression occurs due to the rules of colligative properties. Since MgBr2 is an ionic compound, it acts a strong electrolyte; thus, dissociating completely in an aqueous solution. For the equation:
ΔTf<span> = (K</span>f)(<span>m)(i)
</span>where:
ΔTf = change in freezing point = (Ti - Tf)
Ti = freezing point of pure water = 0 celsius
Tf = freezing point of water with solute = ?
Kf = freezing point depression constant = 1.86 celsius-kg/mole (for water)
m = molality of solution (mol solute/kg solvent) = ?
i = ions in solution = 3
Computing for molality:
Molar mass of MgBr2 = 184.113 g/mol
m = 10.5g MgBr2 / 184.113/ 0.2 kg water = 0.285 mol/kg
For the problem,
ΔTf = (Kf)(m)(i) = 1.86(0.285)(3) = 1.59 = Ti - Tf = 0 - Tf
Tf = -1.59 celsius
Elements are separate particles that contain the properties of only one type of element (pure substance) and an atom represents that element as the smallest non divisible particle that retains the properties of that element. Compounds can be formed by conjoining different atoms together in different ratios and shapes, so a combination of elements.