2.1) (i) W = mg downwards
(ii) N = R = Normal Reaction from the ground upwards
(iii) Fe = Force of engine towards the right
(iv) f = friction towards the left
(v) ma = Constant acceleration towards right.
2.2.1)
v = 25 m/s
u = 0 m/s
∆v = v - u = (25 - 0) m/s = 25 m/s
x = X
∆t = 50 s

a = 0.5 m/s².
2.2.2)
F = ma = 900 kg × 0.5 m/s² = 450 N.
2.2.3)


2.3)
Fe = f + ma
Fe - f = ma
For velocity to be constant,
a should be 0, or, a = 0,
Fe = f = 270 N
2.4.1)
v = 0
u = 25 m/s
a = -0.5 m/s²
v = u + at
t = -u/a = -(25)/(-0.5) = 50 s.
2.4.2)
x = -625/(2×(-0.5)) = 625 m.
Newton's first law of motion says something like "An object remains
in constant, uniform motion until acted on by an external force".
Constant uniform motion means no change in speed or direction.
If an object changes from rest to motion, that's definitely a change
of speed. So it doesn't remain in the state of constant uniform
motion (none) that it had when it was at rest, and that tells us
that an external force must have acted on it.
Answer:
y = 17 m
Explanation:
For this projectile launch exercise, let's write the equation of position
x = v₀ₓ t
y =
t - ½ g t²
let's substitute
45 = v₀ cos θ t
10 = v₀ sin θ t - ½ 9.8 t²
the maximum height the ball can reach where the vertical velocity is zero
v_{y} = v_{oy} - gt
0 = v₀ sin θ - gt
0 = v₀ sin θ - 9.8 t
Let's write our system of equations
45 = v₀ cos θ t
10 = v₀ sin θ t - ½ 9.8 t²
0 = v₀ sin θ - 9.8 t
We have a system of three equations with three unknowns for which it can be solved.
Let's use the last two
v₀ sin θ = 9.8 t
we substitute
10 = (9.8 t) t - ½ 9.8 t2
10 = ½ 9.8 t2
10 = 4.9 t2
t = √ (10 / 4.9)
t = 1,429 s
Now let's use the first equation and the last one
45 = v₀ cos θ t
0 = v₀ sin θ - 9.8 t
9.8 t = v₀ sin θ
45 / t = v₀ cos θ
we divide
9.8t / (45 / t) = tan θ
tan θ = 9.8 t² / 45
θ = tan⁻¹ ( 9.8 t² / 45
)
θ = tan⁻¹ (0.4447)
θ = 24º
Now we can calculate the maximum height
v_y² =
- 2 g y
vy = 0
y = v_{oy}^2 / 2g
y = (20 sin 24)²/2 9.8
y = 3,376 m
the other angle that gives the same result is
θ‘= 90 - θ
θ' = 90 -24
θ'= 66'
for this angle the maximum height is
y = v_{oy}^2 / 2g
y = (20 sin 66)²/2 9.8
y = 17 m
thisis the correct
B. Starting with most recent