Answer:
(a)
(b)
(c) K.E. = 21.168 J
(d)
Explanation:
Given:
- mass of a block, M = 3.6 kg
- initial velocity of the block,
- constant downward acceleration,
That a constant upward acceleration of is applied in the presence of gravity.
∴
- height through which the block falls, d = 4.2 m
(a)
Force by the cord on the block,
∴Work by the cord on the block,
We take -ve sign because the direction of force and the displacement are opposite to each other.
(b)
Force on the block due to gravity:
∵the gravity is naturally a constant and we cannot change it
∴Work by the gravity on the block,
(c)
Kinetic energy of the block will be equal to the net work done i.e. sum of the two works.
mathematically:
K.E. = 21.168 J
(d)
From the equation of motion:
putting the respective values:
is the speed when the block has fallen 4.2 meters.
(a) Let's convert the final speed of the car in m/s:
The kinetic energy of the car at t=19 s is
(b) The average power delivered by the engine of the car during the 19 s is equal to the work done by the engine divided by the time interval:
But the work done is equal to the increase in kinetic energy of the car, and since its initial kinetic energy is zero (because the car starts from rest), this translates into
(c) The instantaneous power is given by
where F is the force exerted by the engine, equal to F=ma.
So we need to find the acceleration first:
And the problem says this acceleration is constant during the motion, so now we can calculate the instantaneous power at t=19 s:
Answer:
• They depend solely on the load that generates it
• Two or more electrical charges interact, which can be positive or negative
• The energy source is based on the electrical voltage
Answer:
F = 800N
the magnitude of the average force exerted on the wall by the ball is 800N
Explanation:
Applying the impulse-momentum equation;
Impulse = change in momentum
Ft = m∆v
F = (m∆v)/t
Where;
F = force
t = time
m = mass
∆v = v2 - v1 = change in velocity
Given;
m = 0.80 kg
t = 0.050 s
The ball strikes the wall horizontally with a speed of 25 m/s, and it bounces back with this same speed.
v2 = 25 m/s
v1 = -25 m/s
∆v = v2 - v1 = 25 - (-25) m/s = 25 +25 = 50 m/s
Substituting the values;
F = (m∆v)/t
F = (0.80×50)/0.05
F = 800N
the magnitude of the average force exerted on the wall by the ball is 800N
Answer:
Explanation:
Electrons are allowed "in between" quantized energy levels, and, thus, only specific lines are observed. <em>FALSE. </em>The specific lines are obseved because of the energy level transition of an electron in an specific level to another level of energy.
The energies of atoms are not quantized. <em>FALSE. </em>The energies of the atoms are in specific levels.
When an electron moves from one energy level to another during absorption, a specific wavelength of light (with specific energy) is emitted. <em>FALSE. </em>During absorption, a specific wavelength of light is absorbed, not emmited.
Electrons are not allowed "in between" quantized energy levels, and, thus, only specific lines are observed. <em>TRUE. </em>Again, you can observe just the transition due the change of energy of an electron in the quantized energy level
When an electron moves from one energy level to another during emission, a specific wavelength of light (with specific energy) is emitted. <em>TRUE. </em>The electron decreases its energy releasing a specific wavelength of light.
The energies of atoms are quantized. <em>TRUE. </em>In fact, the energy of all subatomic, atomic, and molecular particles is quantized.