1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ann [662]
3 years ago
14

I need an answer ASAP .....

Physics
2 answers:
katen-ka-za [31]3 years ago
5 0
Total internal reflection is a powerful tool since it can be used to confine light. ... If light is incident on a cable end with an angle of incidence greater than the critical angle then the light will remain trapped inside the glass strand.
Harrizon [31]3 years ago
4 0

Answer:

Hope this helped :

Explanation:

When light passes from a medium with one index of refraction (m1) to another medium with a lower index of refraction (m2), it bends or refracts away from an imaginary line perpendicular to the surface (normal line). As the angle of the beam through m1 becomes greater with respect to the normal line, the refracted light through m2 bends further away from the line.

At one particular angle (critical angle), the refracted light will not go into m2, but instead will travel along the surface between the two media (sine [critical angle] = n2/n1 where n1 and n2 are the indices of refraction [n1 is greater than n2]). If the beam through m1 is greater than the critical angle, then the refracted beam will be reflected entirely back into m1 (total internal reflection), even though m2 may be transparent!

You might be interested in
Neon atoms at 245 K pass through a fan that gives each mole of neon gas an additional kinetic energy of 16.0 J. Part A What is t
hjlf

Answer:

246.28 K

Explanation:

The total energy of one mole of gas molecules can be calculated by the formula given below

E = \frac{3}{2}\times R\times T

Where R is gas constant and T is absolute temperature.

Put the value of R as 8.314 and temperature as 245 , we get

E = \frac{3}{2}\times 8.314\times 245

= 3055.4 J

Add 16 j to it

Total energy of gas molecules = 3055.4 + 16 = 3071.4 J.

If T be the temperature after addition of energy then

\frac{3}{2}\times 8.314\times T = 3071.4

T =\frac{2\times 3071.4}{3\times 8.314}

T = 246.28 K

7 0
3 years ago
If we have less power, we most likely have
boyakko [2]
The same amount of work being done over a long period of time!
6 0
3 years ago
Sitting in a chairlift, Rebecca has a gravitational potential energy of 5,997.6
stira [4]

Answer:

B) 12 m

Explanation:

Gravitational potential energy is:

PE = mgh

Given PE = 5997.6 J, and m = 51 kg:

5997.6 J = (51 kg) (9.8 m/s²) h

h = 12 m

8 0
3 years ago
A lacrosse ball that is thrown straight upwards reaches a maximum height of 4.5 m. At what initial velocity was it thrown? (note
shtirl [24]

Answer:

The initial velocity was 9.39 m/s

Explanation:

<em>Lets explain how to solve the problem</em>

The ball is thrown straight upward with initial velocity u

The ball reaches a maximum height of 4.5 m

At the maximum height velocity v = 0

The acceleration of gravity is -9.8 m/s²

We need to find the initial velocity

The best rule to find the initial velocity is <em>v² = u² + 2ah</em>, where v is

the final velocity, u is the initial velocity, a is the acceleration of

gravity and h is the height

⇒ v = 0 , h = 4.5 m , a = -9.8 m/s²

⇒ 0 = u² + 2(-9.8)(4.5)

⇒ 0 = u² - 88.2

Add 88.2 to both sides

⇒ 88.2 = u²

Take square root for both sides

⇒ u = 9.39 m/s

<em>The initial velocity was 9.39 m/s</em>

5 0
3 years ago
If the net force on a block is zero
amm1812

If the net force on a block is zero, the block will move at constant velocity

Explanation:

We can answer this question by applying Newton's second law of motion, which states that the net force on an object is equal to the product between its mass and its acceleration:

\sum F = ma (1)

where

\sum F is the net force on the object

m is its mass

a is its acceleration

In this problem, we have a block, and the net force on it is zero:

\sum F = 0

According to eq.(1), this also implies that

a=0

So, the acceleration of the block is zero.

However, acceleration is the rate of change of velocity of a body:

a=\frac{\Delta v}{\Delta t}

where \Delta v is the change in velocity in a time of \Delta t. Since the acceleration is zero, this means that \Delta v=0, and therefore the velocity of the object is constant.

Learn more about Newton's second law:

brainly.com/question/3820012

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • 1.5kj of energy are used every second by a microwave oven, what is the power rating of the oven?
    15·2 answers
  • A 0.03-kg bullet is fired with a horizontal velocity of 470 m/s and becomes embedded in block B which has a mass of 3 kg. After
    10·2 answers
  • For what type of power tool is it especially important to take precautions to prevent a tool component from coming loose and fly
    11·1 answer
  • How does a body move if it's constantly under force?
    9·2 answers
  • A ski gondola is connected to the top of a hill by a steel cable of length 600 m and diameter 1.2 cm . As the gondola comes to t
    13·1 answer
  • Identify at least one example each of absorption, transmission, reflection, and refraction of waves in this photograph.
    6·2 answers
  • The towel has better blank
    12·1 answer
  • TRUE/FALSE, the scientific question is written like “I wonder if [dependent variable] is affected by [independent variable].”
    15·1 answer
  • 100 g of water at 25 °C is poured into an insulating cup. 50 g of ice at 0 °C is added to the
    6·1 answer
  • explain why using a parabolic mirror for a car headlight throws much more light on the highway than a flat mirror.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!