Answer:
<em>The final velocity is 20 m/s.</em>
Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the velocity of an object changes by an equal amount in every equal period of time.
Being a the constant acceleration, vo the initial speed, and t the time, the final speed can be calculated as follows:

The provided data is: vo=10 m/s,
, t=2 s. The final velocity is:


The final velocity is 20 m/s.
The mechanical work done by the sprinter during this time will be 4537.5 J , the average power the sprinter must generate will be 907.5 W and if the sprinter converts food energy to mechanical energy with an efficiency of 25% then he will be burning calories at 54.20 calories per second.
Work in physics is the energy that is transferred to or from an item when a force is applied along a displacement. It is frequently described in its most basic form as the result of force and displacement.
The quantity of energy moved or transformed per unit of time is known as power in physics. The watt, or one joule per second, is the unit of power in the International System of Units.. A scalar quantity is power.
Given 75-kg sprinter accelerates from rest to a speed of 11.0 m/s in 5.0 s.
So let,
m = 75 kg
v = 11.0 m/s
t = 5.0 s
So the mechanical work done by the sprinter during this time will be as follow:
W = 0.5 mv²
W = 0.5 (75)(11)²
W = 4537.5 J
The average power the sprinter must generate will be as follow:
Power(P) = W / t
P = 4537.5/5
P = 907.5 W
Only 25% is absorbed. So, the sprinter only absorbed 226.875 J per second which is equal to 54.20 calories per second.
Hence mechanical work done by the sprinter during this time will be 4537.5 J , the average power the sprinter must generate will be 907.5 W and if the sprinter converts food energy to mechanical energy with an efficiency of 25% then he will be burning calories at 54.20 calories per second.
Learn more about mechanical power here:
brainly.com/question/25573309
#SPJ10
Answer:
Speed = 575 m/s
Mechanical energy is conserved in electrostatic, magnetic and gravitational forces.
Explanation:
Given :
Potential difference, U = 
Mass of the alpha particle, 
Charge of the alpha particle is, 
So the potential difference for the alpha particle when it is accelerated through the potential difference is

And the kinetic energy gained by the alpha particle is

From the law of conservation of energy, we get





The mechanical energy is conserved in the presence of the following conservative forces :
-- electrostatic forces
-- magnetic forces
-- gravitational forces
There are no appropriate examples in the list you provided with your question.
Examples of radiation:
... sunshine to tan your skin
... radio energy to bring you the news
... X-ray to check your teeth
... microwave to heat up the meatloaf
... flashlight to see where you're going
... RF energy to get an MRI of your knee
... infrared radiation from the campfire to warm your tootsies
... UHF radio waves to make a call or check Facebook with your smartphone
Solution:
54 / 9 = 6 boxes.