Answer:
Δt'/ T% = 90.3%
Explanation:
Simple harmonic movement is described by the expression
x = A cos (wt)
we find the time for the two points of motion
x = - 0.3 A
-0.3 A = A cos (w t₁)
w t₁ = cos -1 (-0.3)
remember that angles are in radians
w t₁ = 1.875 rad
x = 0.3 A
0.3 A = A cos w t₂
w t₂ = cos -1 (0.3)
w t₂ = 1,266 rad
Now let's calculate the time of a complete period
x= -A
w t₃ = cos⁻¹ (-1)
w t₃ = π rad
this angle for the forward movement and the same time for the return movement in the oscillation to the same point, which is the definition of period
T = 2 t₃
T = 2π / w s
now we can calculate the fraction of time in the given time interval
Δt / T = (t₁ -t₂) / T
Δt / T = (1,875 - 1,266) / 2pi
Δt / T = 0.0969
This is the fraction for when the mass is from 0 to 0.3, for regions of oscillation of greater amplitude the fraction is
Δt'/ T = 1 - 0.0969
Δt '/ T = 0.903
Δt'/ T% = 90.3%
She could tell by how many components she put in. The compounds, are like the ingredients. The Mixture is all the ingredients stirred together.
Answer:
The lenses with different focal length are four.
Explanation:
Given that,
Radius of curvature R₁= 4
Radius of curvature R₂ = 8
We know ,
Refractive index of glass = 1.6
When, R₁= 4, R₂ = 8
We need to calculate the focal length of the lens
Using formula of focal length

Put the value into the formula



When , R₁= -4, R₂ = 8
Put the value into the formula



When , R₁= 4, R₂ = -8
Put the value into the formula



When , R₁= -4, R₂ = -8
Put the value into the formula



Hence, The lenses with different focal length are four.
All it does is lets him pull in a more convenient direction to raise the load. It has no effect on the required force.
Answer:
A. Vx = 3.63 m/s
B. Vy = -45.73 m/s
C. |V| = 45.87 m/s
D. θ = -85.46°
Explanation:
Given that position, r, is given as:
r = 3.63tˆi − 5.73t^2ˆj + 8.16ˆk
Velocity is the derivative of position, r:
V = dr/dt = 3.63 - 11.46t^j
A. x component of velocity, Vx = 3.63 m/s
B. y component of velocity, Vy = -11.46t
t = 3.99 secs,
Vy = - 11.46 * 3.99 = -45.73 m/s
C. Magnitude of velocity, |V| = √[(-45.73)² + 3.63²]
|V| = √(2091.2329 + 13.1769)
|V| = √(2104.4098)
|V| = 45.87 m/s
D. Angle of the velocity relative to the x axis, θ is given as:
tanθ = Vy/Vx
tanθ = -45.73/3.63
tanθ = -12.6
θ = -85.46°