Answer:
a.) 1567.2 m/s
b.) 149.4 m/s
Explanation:
Given that a 26 kg body is moving through space in the positive direction of an x axis with a speed of 350 m/s when, due to an internal explosion, it breaks into three parts. One part, with a mass of 7.8 kg, moves away from the point of explosion with a speed of 180 m/s in the positive y direction. A second part, with a mass of 8.8 kg, moves in the negative x direction with a speed of 640 m/s.
The x-component of the third part can be calculated by assuming that it moves in a positive x axis.
The third mass = 26 - ( 7.8 + 8.8)
The third mass = 26 - 16.6
The third mass = 9.4kg
since momentum is conserved, the momentum before explosion will be equal to sum of the momentum after explosion
26 x 350 = -8.8 x 640 + 9.4V
9100 = -5632 + 9.4V
9.4V = 9100 + 5632
9.4V = 14732
V = 14732/9.4
V = 1567.2 m/s
(b) y-component of the velocity of the third part will be
7.8 x 180 = 9.4 V
1404 = 9.4V
V = 1404/9.4
V = 149.4 m/s
consider the motion in x-direction
= initial velocity in x-direction = ?
X = horizontal distance traveled = 100 m
= acceleration along x-direction = 0 m/s²
t = time of travel = 4.60 sec
Using the equation
X = t + (0.5) t²
100 = (4.60)
= 21.7 m/s
consider the motion along y-direction
= initial velocity in y-direction = ?
Y = vertical displacement = 0 m
= acceleration along x-direction = - 9.8 m/s²
t = time of travel = 4.60 sec
Using the equation
Y = t + (0.5) t²
0 = (4.60) + (0.5) (- 9.8) (4.60)²
= 22.54 m/s
initial velocity is given as
= sqrt(()² + ()²)
= sqrt((21.7)² + (22.54)²) = 31.3 m/s
direction: θ = tan⁻¹(22.54/21.7) = 46.12 deg
The initial velocity of the train is 12.56 m/s.
<h3>
Initial velocity</h3>
The initial velocity of the train can be determined by using the first kinematic equation as shown below;
v = u + at
u = v - at
where;
- v is the final velocity = 110 km/h = 30.56 m/s
- u is the initial velocity
u = 30.56 - (36 x 0.5)
u = 12.56 m/s
Thus, the initial velocity of the train is 12.56 m/s.
Learn more about initial velocity here: brainly.com/question/19365526
Answer:
<em>The glider's new speed is 68.90 m/s</em>
Explanation:
<u>Principle Of Conservation Of Mechanical Energy</u>
The mechanical energy of a system is the sum of its kinetic and potential energy. When the only potential energy considered in the system is related to the height of an object, then it's called the gravitational potential energy. The kinetic energy of an object of mass m and speed v is
The gravitational potential energy when it's at a height h from the zero reference is
The total mechanical energy is
The principle of conservation of mechanical energy states the total energy is constant while no external force is applied to the system. One example of a non-conservative system happens when friction is considered since part of the energy is lost in its thermal manifestation.
The initial conditions of the problem state that our glider is glides at 416 meters with a speed of 45.2 m/s. The initial mechanical energy is
Operating in terms of m
Then we know the glider dives to 278 meters and we need to know their final speed, let's call it . The final mechanical energy is
Operating and factoring
Both mechanical energies must be the same, so
Simplifying by m and rearranging
Computing
The glider's new speed is 68.90 m/s