The correct answer is: Option (A) 75 J
Explanation:
First, be careful with the units here. As you can see it is mentioned that there is a 50N box. It means that the weight (<em>mg</em>) of the box is given as the unit is <em>Newton</em>, not its mass (which is in kg).
As,
Potential-energy = mass * acceleration-due-to-gravity * height
PE = m*g*h --- (A)
In equation (A), mg is actually the weight of the box, which is given.
mg = 50N
h = height = 1.5m
Plug the values in equation (A):
PE = 50 * 1.5 = <em>75 J (Option A)</em>
Answer:
2.36 x 10^6 J
Explanation:
Tc = 0°C = 273 K
TH = 22.5°C = 295.5 K
Qc = heat used to melt the ice
mass of ice, m = 85.7 Kg
Latent heat of fusion, L = 3.34 x 10^5 J/kg
Let Energy supplied is E which is equal to the work done
Qc = m x L = 85.7 x 3.34 x 10^5 = 286.24 x 10^5 J
Use the Carnot's equation


QH = 309.8 x 10^5 J
W = QH - Qc
W = (309.8 - 286.24) x 10^5
W = 23.56 x 10^5 J
W = 2.36 x 10^6 J
Thus, the energy supplied is 2.36 x 10^6 J.
Wow ! This is not simple. At first, it looks like there's not enough information, because we don't know the mass of the cars. But I"m pretty sure it turns out that we don't need to know it.
At the top of the first hill, the car's potential energy is
PE = (mass) x (gravity) x (height) .
At the bottom, the car's kinetic energy is
KE = (1/2) (mass) (speed²) .
You said that the car's speed is 70 m/s at the bottom of the hill,
and you also said that 10% of the energy will be lost on the way
down. So now, here comes the big jump. Put a comment under
my answer if you don't see where I got this equation:
KE = 0.9 PE
(1/2) (mass) (70 m/s)² = (0.9) (mass) (gravity) (height)
Divide each side by (mass):
(0.5) (4900 m²/s²) = (0.9) (9.8 m/s²) (height)
(There goes the mass. As long as the whole thing is 90% efficient,
the solution will be the same for any number of cars, loaded with
any number of passengers.)
Divide each side by (0.9):
(0.5/0.9) (4900 m²/s²) = (9.8 m/s²) (height)
Divide each side by (9.8 m/s²):
Height = (5/9)(4900 m²/s²) / (9.8 m/s²)
= (5 x 4900 m²/s²) / (9 x 9.8 m/s²)
= (24,500 / 88.2) (m²/s²) / (m/s²)
= 277-7/9 meters
(about 911 feet)
Answer:
Option A
Explanation:
The statement makes sense since it's already explained that the galaxy is moving away from us and unlike option C which depicts that the galaxy is moving to us.
This statement makes sense. The redshift means that we see the galaxy moving away from us, so observers in that galaxy must also see us moving away from them—which means they see us redshifted as well
Answer:
They are not concerned about their future health cause they are thinking they are probably healthy right now and they don’t realize that that can change in the future. If u are fit right now then that means u wont struggle with future physical fitness activities.
Explanation: