Answer:
If she stands on the North side of a river flowing to the East at 5 mph,
she must head towards the SouthWest to arrive on the South side of the river directly across from her starting point and we have
x^2 + 5^2 = 10^2 where x is her speed directly across the river
x = (75)^1/2 = 8.66 mph towards the South
sin theta = 5 / 10 = 1/2
She must angle the boat at 30 deg from straight South
Answer: The speed will be 30 m/s .
Explanation:
Given: Initial velocity of the car: u = 0 m/s
Constant Acceleration: a = 5 m/s²
Time: t= 6 seconds
To find: Final velocity(v)
Formula: v = u+at
Substitute values in the formula, we get
v= 0+(5)(6) m/s
⇒ v= 30 m/s
i.e. Final velocity = 30 m/s
Hence, the speed will be 30 m/s .
Answer:
Star A is closer than Star B
Explanation:
As we know that in parallax method of distance measurement the angle subtended by the star when it covers a distance of one Parsec arc length, it is known as parallax angle
Here we can say

so we have

so here we have
angle subtended by Star A = 1 arc sec
angle subtended by star B = 0.75 arc sec
now we have
distance for star A is given as

distance of star B is given as

So star A is closer than star B
Answer:
mass is lifted 1.8 m. What is the potential energy of the mass 4. A 100 kg
Answer:
yes
Explanation:
you will feel weary after shorter times