The time lapse between when the bat emits the sound and when it hears the echo is 0.05 s.
From the question given above, the following data were obtained:
Velocity of sound (v) = 343 m/s
Distance (x) = 8.42 m
Time (t) =?
We can obtain obtained the time as illustrated below:
v = 2x / t
343 = 2 × 8.42 / t
343 = 16.84 / t
Cross multiply
343 × t = 16.84
Divide both side by 343
t = 16.84/343
t = 0.05 s
Thus, the time between when the bat emits the sound and when it hears the echo is 0.05 s.
<h3>
How does a bat know how far away something is?</h3>
A bat emits a sound wave and carefully listens to the echoes that return to it. The returning information is processed by the bat's brain in the same way that we processed our shouting sound with a stopwatch and calculator. The bat's brain determines the distance of an object by measuring how long it takes for a noise to return.
Learn more about time elapses between when the bat emits the sound :
<u>brainly.com/question/16931690</u>
#SPJ4
Correction question:
A bat emits a sonar sound wave (343 m/s) that bounces off a mosquito 8.42 m away. How much time elapses between when the bat emits the sound and when it hears the echo? (Unit = s)
Answer:
Explanation:
a) A coin has two sides, therefore the total outcome possible when a coin is tossed is 2 i.e Head (H) and Tail (T)
outcome of two coins will be 4 i.e 2^2
Outcome of three coins will be 8 i.e 2^3 and so on. Since its following a trend, the outcome when 'n' coins is tossed will be 2^n.
Using the general formula, the possible outcome when a coin is tossed 13 times will be "2^13"
b)
Answer:
C:
Explanation:
either C or A but A seems unlikely after multiple attempts. Although the question doesn't make it clear whether the balance is electric either way it could be wrong in someway and seems to be the most likely.
Answer: The average velocity is 150 km/h
Explanation: 70+80=150
Answer:
k1 + k2
Explanation:
Spring 1 has spring constant k1
Spring 2 has spring constant k2
After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.
x1 = x2
Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are
k1 = F1/x -> F1 =k1*x
k2 = F2/x -> F2 =k2*x
While F = F1 + F2
Substitute equation of F1 and F2 into the equation of sum of forces
F = F1 + F2
F = k1*x + k2*x
= x(k1 + k2)
Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)
Considering the general equation of spring forces (Hooke's Law) F = kx,
The effective spring constant for the system is k1 + k2