Answer:
1885.2 ohms
Explanation:
Step one:
given data
L=5H
f=60Hz
Required
The inductive reactance of the inductor
Step two:
Applying the expression
XL= 2πfL
substitute
XL=2*3.142*60*5
XL=1885.2 ohms
Derive relation F = ma from Newton 2nd Law of Motion. Let us derive the relation of force F = ma from Newton's second law: ... It means that the linear momentum will change faster when a bigger force is applied. Consider a body of mass 'm' moving with velocity v.
Answer:
False
Explanation:
The moment of inertia for a rigid body is given by

where
is the density distribution of the object
r is the distance from the axis of rotation of the object
Essentially, the moment of inertia does not depend only on the mass of the object, but also on its shape. For example: for a solid cylinder, the moment of inertia derived from the formula above is

where M is the mass of the cylinder and R is its radius. As we see, I (moment of inertia) does not depend on the mass only: therefore, if two objects have same moment of inertia, this does not imply that they also have the same mass.