1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nalin [4]
3 years ago
7

Many biological systems are well-described by the laws of statistical physics. A simple yet often powerful approach is to think

of a system as having only two states. For example, an ion channel may be open or closed. In this problem, consider a simple model of membrane channels for ions: The system is described by a Boltzmann distribution with only two states, with energies ε1 (open) and ε2 (closed). Assume the "open" state is the state of higher energy, so that ε1 > ε2.
If the probability of finding an ion channel open is popen and the probability of finding the ion channel closed is pclosed, which of the expressions below best represents the relative probability of open to closed, R = popen/pclosed? Use the notation z1 = e-ε1/kBT and z2 = e-ε2/kBT

a. z1-z2
b. z2-z1
c. z1/z2
d. z2/z1
e. Something else
Physics
1 answer:
GuDViN [60]3 years ago
8 0

Answer:

z1/z2

Explanation:

we have no quantum effects therefore we can make use of Maxwell Boltzmann distribution in the description of this system.

using the boltzman distribution the probability of finding a particle in energy state

P_{ei}  = \frac{gie^{-ei/kol} }{z}

we have

gi to be degeneration of the ith state

ei to be energy of ith state

z=e^{-ei/kbt} summation

P_{ope} = \frac{e^{-ei/kBt} }{z} = \frac{Z_{1} }{Z}

We have R to be equal to

\frac{P_{ope} }{P_{Close} } = \frac{Z1}{Z2}

You might be interested in
A small first-aid kit is dropped by a rock climber who is descending steadily at -1.25 m/s. After 2.5 seconds, what is the veloc
postnew [5]
The genuine answer here

7 0
2 years ago
Water flows straight down from an open faucet. The cross-sectional area of the faucet is 2.4 × 10-4m2 and the speed of the water
Ksenya-84 [330]

To solve this problem it is necessary to apply the continuity equations in the fluid and the kinematic equation for the description of the displacement, velocity and acceleration.

By definition the movement of the Fluid under the terms of Speed, acceleration and displacement is,

v_2^2 = v_1^2 + 2gh

Where,

V_i = Velocity in each state

g= Gravity

h = Height

Our values are given as,

A_1 = 2.4*10^{-4} m^2

v_1 = 0.8 m/s

h = 0.11m

Replacing at the kinetic equation to find V_2 we have,

v_2 = \sqrt{v_1^2 + 2gh}

v_2 = \sqrt{(0.8 m/s)^2 + 2(9.80 m/s2)(0.11 m)}

v_2= 1.67 m/s

Applying the concepts of continuity,

A_1v_1 = A_2v_2

We need to find A_2 then,

A_2= \frac{A_1v_1 }{v_2}

So the cross sectional area of the water stream at a point 0.11 m below the faucet is

A_2= \frac{A_1v_1 }{v_2}

A_2= \frac{(2.4*10^{-4})(0.8)}{(1.67)}

A_2= 1.14*10^{-4} m2

Therefore the cross-sectional area of the water stream at a point 0.11 m below the faucet is 1.14*10^{-4} m2

8 0
3 years ago
gAn optical engineer needs to ensure that the bright fringes from a double-slit are 15.7 mm apart on a detector that is from the
igomit [66]

Answer:

d = 68.5 x 10⁻⁶ m = 68.5 μm

Explanation:

The complete question is as follows:

An optical engineer needs to ensure that the bright fringes from a double-slit are 15.7 mm apart on a detector that is  1.70m from the slits. If the slits are illuminated with coherent light of wavelength 633 nm, how far apart should the slits be?

The answer can be given by using the formula derived from Young's Double Slit Experiment:

y = \frac{\lambda L}{d}\\\\d  =\frac{\lambda L}{y}\\\\

where,

d = slit separation = ?

λ = wavelength = 633 nm = 6.33 x 10⁻⁷ m

L = distance from screen (detector) = 1.7 m

y = distance between bright fringes = 15.7 mm = 0.0157 m

Therefore,

d = \frac{(6.33\ x\ 10^{-7}\ m)(1.7\ m)}{0.0157\ m}\\\\

<u>d = 68.5 x 10⁻⁶ m = 68.5 μm</u>

7 0
3 years ago
An emf source of 6.0V is connected to a purely resistive lamp and a current of 2.0 amperes flows. All the wires are resistance-f
IgorC [24]

Resistance = (voltage) / (current)

Resistance = (6.0 v) / (2.0 A)

Resistance = 3.0 ohms 
7 0
3 years ago
On a nice summer day,Kim takes her niece Madison for a walk in her stroller.If they start from rest and accelerate at a rate of
11111nata11111 [884]

2.5m/s

Explanation:

Given parameters:

Initial velocity = 0m/s

Acceleration = 0.5m/s²

time of travel = 5s

Solution:

Final velocity = ?

Solution:

Acceleration can be defined as the change in velocity with time:

          Acceleration = \frac{Final velocity - Initial velocity}{time}

  From the equation above, the unknown is final velocity:

Final velocity - initial velocity = Acceleration x time

 since initial velocity = 0

   Final velocity = 0.5 x 5 = 2.5m/s

Learn more:

Acceleration brainly.com/question/3820012

#learnwithBrainly

6 0
3 years ago
Other questions:
  • An isolated system allows which of the following to enter or exit
    9·2 answers
  • A closed box with square base is to be built to house an ant colony. the bottom of the box and all four sides are to be made of
    13·1 answer
  • For this car, predict the shape of a graph that shows distance (x) versus time (t). Note that time is the independent variable a
    10·2 answers
  • Which organisms break down dead matter and waste into nonliving elements?
    8·2 answers
  • Rasheed runs a football 10 meters east, turns and runs the football 6 meters west. If his velocity during this run is found to b
    9·2 answers
  • Which of the following seismic wave moves the fastest
    11·1 answer
  • Power is measured in which unit?
    6·2 answers
  • A 20g book laying on a 40cm high table. Just before a cat knocks it off the table what is the books gravitational potential ener
    9·1 answer
  • A stream of air flowing at 20 liters/min with P = 0.20 MPa and T = 400 K is mixed with a stream ofmethane flowing at 5 liters/mi
    12·1 answer
  • What happened to the combined energy of the two sleds when they collided?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!