Explanation:
The magnitude of a vector v can be found using Pythagorean's theorem.
||v|| = √(vₓ² + vᵧ²)
||v|| = √((-309)² + (187)²)
||v|| ≈ 361
You can find the angle of a vector using trigonometry.
tan θ = vᵧ / vₓ
tan θ = 187 / -309
θ ≈ 149° or θ ≈ 329°
vₓ is negative and vᵧ is positive, so θ must be in the second quadrant. Therefore, θ ≈ 149°.
You'll never get the correct answer without the correct conversion factor. Note carefully that you have no decimal. It should be
<span>1 km = 0.6214 miles </span>
<span>1000 m = 1 km </span>
<span>60 seconds = 1 minute </span>
<span>60 minutes = 1 hour. </span>
<span>2.998E8 m/s x (1 km/1000m) x (0.6214 miles/km) x (60 sec/min) x (60 min/hr) = ?</span>
Answer:
a = 2.22 [m/s^2]
Explanation:
First we have to convert from kilometers per hour to meters per second
![40 [\frac{km}{h}]*[\frac{1h}{3600s}]*[\frac{1000m}{1km}] = 11.11 [m/s]](https://tex.z-dn.net/?f=40%20%5B%5Cfrac%7Bkm%7D%7Bh%7D%5D%2A%5B%5Cfrac%7B1h%7D%7B3600s%7D%5D%2A%5B%5Cfrac%7B1000m%7D%7B1km%7D%5D%20%3D%2011.11%20%5Bm%2Fs%5D)
We have to use the following kinematics equation:

where:
Vf = final velocity = 11.11 [m/s]
Vi = initial velocity = 0
a = acceleration [m/s^2]
t = time = 5 [s]
The initial speed is taken as zero, as the car starts from zero.
11.11 = 0 + (a*5)
a = 2.22 [m/s^2]
Answer:
I think it's 0 N 3rd choice
1) Increasing the current flow
2) Increasing the number of coils
3) Passing an 'iron core' through the coil of the electromagnet