F=ma
F=QE = 1.602e-19C*700N/C = 1.1214e-16N
1.1214e-16N = ma = 1.6726e-27kg * a
a = 6.702e10 m/s² along the direction of the field line
Answer:
2.69 m/s
Explanation:
Hi!
First lets find the position of the train as a function of time as seen by the passenger when he arrives to the train station. For this state, the train is at a position x0 given by:
x0 = (1/2)(0.42m/s^2)*(6.4s)^2 = 8.6016 m
So, the position as a function of time is:
xT(t)=(1/2)(0.42m/s^2)t^2 + x0 = (1/2)(0.42m/s^2)t^2 + 8.6016 m
Now, if the passanger is moving at a constant velocity of V, his position as a fucntion of time is given by:
xP(t)=V*t
In order for the passenger to catch the train
xP(t)=xT(t)
(1/2)(0.42m/s^2)t^2 + 8.6016 m = V*t
To solve this equation for t we make use of the quadratic formula, which has real solutions whenever its determinat is grater than zero:
0≤ b^2-4*a*c = V^2 - 4 * ((1/2)(0.42m/s^2)) * 8.6016 m =V^2 - 7.22534(m/s)^2
This equation give us the minimum velocity the passenger must have in order to catch the train:
V^2 - 7.22534(m/s)^2 = 0
V^2 = 7.22534(m/s)^2
V = 2.6879 m/s
Answer:



Explanation:
<u>Simple Pendulum</u>
It's a simple device constructed with a mass (bob) tied to the end of an inextensible rope of length L and let swing back and forth at small angles. The movement is referred to as Simple Harmonic Motion (SHM).
(a) The angular frequency of the motion is computed as

We have the length of the pendulum is L=0.81 meters, then we have


(b) The total mechanical energy is computed as the sum of the kinetic energy K and the potential energy U. At its highest point, the kinetic energy is zero, so the mechanical energy is pure potential energy, which is computed as

where h is measured to the reference level (the lowest point). Please check the figure below, to see the desired height is denoted as Y. We know that

And

Solving for Y



The potential energy is


The mechanical energy is, then


(c) The maximum speed is achieved when it passes through the lowest point (the reference for h=0), so the mechanical energy becomes all kinetic energy (K). We know

Equating to the mechanical energy of the system (M)

Solving for v


Answer:
The magnification of an astronomical telescope is -30.83.
Explanation:
The expression for the magnification of an astronomical telescope is as follows;

Here, M is the magnification of an astronomical telescope,
is the focal length of the eyepiece lens and
is the focal length of the objective lens.
It is given in the problem that an astronomical telescope having a focal length of objective lens 74 cm and whose eyepiece has a focal length of 2.4 cm.
Put
and
in the above expression.

M=-30.83
Therefore, the magnification of an astronomical telescope is -30.83.