Answer:
0.686 g of ice melts each second.
Solution:
As per the question:
Cross-sectional Area of the Copper Rod, A = 
Length of the rod, L = 19.6 cm = 0.196 m
Thermal conductivity of Copper, K = 
Conduction of heat from the rod per second is given by:

where
= temperature difference between the two ends of the rod.
Thus

Now,
To calculate the mass, M of the ice melted per sec:

where
= Latent heat of fusion of water = 333 kJ/kg

Answer:
Explanation:
Atoms form chemical bonds to make their outer electron shells more stable. ... An ionic bond, where one atom essentially donates an electron to another, forms when one atom becomes stable by losing its outer electrons and the other atoms become stable (usually by filling its valence shell) by gaining the electrons.
Answer:
The balloon would still move like a rocket
Explanation:
The principle of work of this system is the Newton's third law of motion, which states that:
"When an object A exerts a force on an object B (action), object B exerts an equal and opposite force (reaction) on object A"
In this problem, we can identify the balloon as object A and the air inside the balloon as object B. As the air goes out from the balloon, the balloon exerts a force (backward) on the air, and as a result of Newton's 3rd law, the air exerts an equal and opposite force (forward) on the balloon, making it moving forward.
This mechanism is not affected by the presence or absence of surrounding air: in fact, this mechanism also works in free space, where there is no air (and in fact, rockets also moves in space using this system, despite the absence of air).
Answer:
5.9 x 10⁻⁷m
Explanation:
Given parameters:
Frequency = 5.085 x 10¹⁴Hz
Speed of light = 3.0 x 10⁸m/s
Unknown:
Wavelength of the orange light = ?
Solution:
The wavelength can be derived using the expression below;
wavelength =
v is the speed of light
f is the frequency
wavelength =
= 5.9 x 10⁻⁷m
Answer:
I believe it is luminosity and distance
Explanation:
So B