1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KATRIN_1 [288]
2 years ago
8

Observe the given figure and find the the gravitational force between m1 and m2.​

Physics
1 answer:
Leno4ka [110]2 years ago
8 0

Answer:

The gravitational force between m₁ and m₂, is approximately 1.06789 × 10⁻⁶ N

Explanation:

The details of the given masses having gravitational attractive force between them are;

m₁ = 20 kg, r₁ = 10 cm = 0.1 m, m₂ = 50 kg, and r₂ = 15 cm = 0.15 m

The gravitational force between m₁ and m₂ is given by Newton's Law of gravitation as follows;

F =G \cdot \dfrac{m_{1} \cdot m_{2}}{r^{2}}

Where;

F = The gravitational force between m₁ and m₂

G = The universal gravitational constant = 6.67430 × 10⁻¹¹ N·m²/kg²

r₂ = 0.1 m + 0.15 m = 0.25 m

Therefore, we have;

F = 6.67430 \times 10^{-11} \ N \cdot m^2/kg \times \dfrac{20 \ kg\times 50 \ kg}{(0.1 \ m+ 0.15 \ m)^{2}} \approx 1.06789 \times 10^{-6} \ N

The gravitational force between m₁ and m₂, F ≈ 1.06789 × 10⁻⁶ N

You might be interested in
What is the maximum mass that can hang without sinking from a 20-cm diameter Styrofoam sphere in water? Assume the volume of the
alex41 [277]

Answer:

the maximum mass that can hang without sinking is 2.93 kg

Explanation:

Given: details:

sphere diameter  d = 20 cm

so, radius r = 10 cm  = 0.10 m

density of the Styrofoam sphere D = 300 kg/m3

sphere volume  V = \frac{4}{3} \pi r^3

                                                   =\frac{4}{3} \pi 0.10^3

                                                   =4.18*10^{-3} m^3

we know that

Density = \frac{Mass}{Volume}

mass  M = Density * Volume

                                  = (300)(4.18*10^{-3} m3)

                                  =1.25 kg

mass of the water displace = volume *density  of water

                                                 = 4.18*10^{-3} m3 * 1000

                                                 = 4.18 kg

The difference between the mass of water and mass of styrofoam is the amount of mass that the sphere can support

=4.18 kg  -1.25 kg

= 2.93 kg

3 0
3 years ago
An object with a mass of 5kg accelerates at 2m/s2. How much force in Newtons(N) is needed to cause this to happen??
Reptile [31]

Answer: The formula of Newtons second law of motion is F=MA so therefore it would be written like this Force = Mass X Acceleration

F = 5 x 2

F = 10 N

6 0
3 years ago
An object is placed 18 cm in front of spherical mirror.if the image is formed at 4cm to the right of the mirror, calculate it's
ivolga24 [154]
1) Focal length

We can find the focal length of the mirror by using the mirror equation:
\frac{1}{f}= \frac{1}{d_o}+ \frac{1}{d_i} (1)
where 
f is the focal length
d_o is the distance of the object from the mirror
d_i is the distance of the image from the mirror

In this case, d_o = 18 cm, while d_i=-4 cm (the distance of the image should be taken as negative, because the image is to the right (behind) of the mirror, so it is virtual). If we use these data inside (1), we find the focal length of the mirror:
\frac{1}{f}= \frac{1}{18 cm}- \frac{1}{4 cm}=- \frac{7}{36 cm}
from which we find
f=- \frac{36}{7} cm=-5.1 cm

2) The mirror is convex: in fact, for the sign convention, a concave mirror has positive focal length while a convex mirror has negative focal length. In this case, the focal length is negative, so the mirror is convex.

3) The image is virtual, because it is behind the mirror and in fact we have taken its distance from the mirror as negative.

4) The radius of curvature of a mirror is twice its focal length, so for the mirror in our problem the radius of curvature is:
r=2f=2 \cdot 5.1 cm=10.2 cm
3 0
3 years ago
Which equation represents mass-energy equivalence? E = m2c E = mc2 E = (mc)2 E = mc
motikmotik

Einstein's energy mass equivalence relation say that if the whole given mass is converted to energy then it would be

E = mc^2

where

m = mass in kg

c = speed of light in m/s

this is the origination of quantum physics and by this formula we can relate the dual nature of light and particle

So correct relation above will be

E = mc^2

4 0
3 years ago
Read 2 more answers
Which is not one of the three forms of energy that travels to earth
Tju [1.3M]
Is there options for this??
5 0
2 years ago
Other questions:
  • A paratrooper is initially falling downward at a speed of 27.6 m/s before her parachute opens. When it opens, she experiences an
    6·1 answer
  • According to the U.S. Census Bureau, in 2016, about 12.7% of the American population lived in poverty. Research demonstrates tha
    15·1 answer
  • A spherical bowling ball with mass m = 4.1 kg and radius R = 0.117 m is thrown down the lane with an initial speed of v = 8.9 m/
    9·1 answer
  • What does Kinetic Energy depend on
    8·1 answer
  • A ball is projected vertically downward at a speed of 4.00 m/s. How far does the bal travel in 1.80 s? What is the velocity of t
    10·1 answer
  • An object is acted by force of 22 newtons to the right and a force of 13 newtons to left ​
    11·1 answer
  • What is the y component of a vector defined as 12.2m at 81.5°?
    12·1 answer
  • A 35.0 g bullet strikes a 50 kg stationary piece of lumber and embeds itself in the wood. The piece of lumber and the bullet fly
    11·1 answer
  • The loudness of a sound is determined by the __________, or height, of the sound wave.
    11·1 answer
  • Worth 25 points on my exam
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!