Answer:
20.2g (3 s.f.)
Explanation:
Please see attached picture for full solution.
Molar mass Li2O = 7.0 x 2 + 16 => 30 g/mol
1 mole Li2O ---------- 30 g
( moles Li2O ) -------- 45.0 g
moles Li2O = 45.0 x 1 / 30
moles Li2O = 45.0 / 30
= 1.50 moles of Li2O
hope this helps!
Malleability described the property of physical deformation under some compressive stress; a malleable material could, for example, be hammered into thin sheets. Malleability is generally a property of metallic elements: The atoms of elemental metals in the solid state are held together by a sea of indistinguishable, delocalized electrons. This also partially accounts for the generally high electrical and thermal conductivity of metals.
In any case, only one of the elements listed here is a metal, and that’s copper. Moreover, the other elements (hydrogen, neon, and nitrogen) are gases under standard conditions, and so their malleability wouldn’t even be a sensible consideration.
I have provided two images to help with this question. The first image is the reaction that is taking place. The γ-pyran is treated with the hydride acceptor triphenylmethyl perchlorate. A hydride is a hydrogen atom containing a lone pair of electrons giving it a negative charge. The triphenylmethyl cation is a positively charged carbocation that greatly wants to accept an electron pair to stabilize its charge. Therefore, it abstracts a hydride from the γ-puran starting material. It grabs one of the hydrogen atoms that is drawn in the reaction scheme. This results in the formation of triphenylmethane and a pyrylium perchlorate salt with the formula C₅H₅ClO₅. The important aspect of the structure is shown in the attached images. The most stable resonance form of the pyrylium cation is shown with a positive charge on the oxygen.
The reason this pyrylium ion is the most stable resonance form is because the formation of the oxonium ion (positive charged oxygen with 3 bonds) leads to an aromatic compound. There are 6 pi electrons in conjugation in this ring similar to a benzene ring and this results in the most stable structure.