Answer:
D
Step-by-step explanation:
Firstly, the question is phrased very very badly as the four answers provided are coordinate points rather than how far apart the cities are in units.
To calculate the distance between two points, we have to use Pythagoras' Theorem as it's just pretty much a right-angle triangle. Please look at the (terribly drawn) image provided.
Keep in mind that these points are only roughly placed on the map.
But firstly, to use Pythagoras' Theorem (a^2 + b^2 = c^2), we must find the length of the two sides.
To find the length of the horizontal line (which from now on I'll refer to as 'a'), we must subtract the smaller x value from the larger one.
47 - 35 = 12
To find the length of the vertical line (which from now on I'll refer to as 'b'), we must subtract the smaller y value from the larger one.
122 - 78 = 44
I assume that the answer you should pick is D. (12, 44)
However, that doesn't exactly answer the question... it's worded a little weirdly.
To solve the rest of the equation, do the following:
Now that we know that the length of a = 12 and the length of b = 44, we can use Pythagoras' Theorem.
a^2 + b^2 = c^2
12^2 + 44^2 = c^2
144 + 1936 = c^2
2080 = c^2
c = 
c = 45.61
The answer is 45.61 units.
Answer: the answer is ccc
Step-by-step explanation: hey
Answer:
the answer would be x = 3, 0
Step-by-step explanation:
as much as I would like to, I'm really not that good at explaining things
Answers:
y = 50
angle AOB = 100
=========================================
Explanation:
Angle x is an inscribed angle that subtends or cuts off minor arc AB. This is the shortest distance from A to B along the circle's edge.
Angle y is also an inscribed angle that cuts off the same minor arc AB. Therefore, it is the same measure as angle x. We can drag point D anywhere you want, and angle y will still be an inscribed angle and still be the same measure as x.
-------------------
Point O is the center of the circle. This is because "circle O" is named by its center point.
Angle AOB is considered a central angle as its vertex point is the center of the circle.
Because AOB cuts off minor arc AB, and it's a central angle, it must be twice that of the inscribed angle that cuts off the same arc.
This is the inscribed angle theorem.
Using this theorem, we can say the following
central angle = 2*(inscribed angle)
angle AOB = 2*(angle x)
angle AOB = 2*50
angle AOB = 100 degrees
Answer:3
Step-by-step explanation: