Answer:
in the presence of water H2O
Na2CO3 (S) --> 2Na+ (aq)+ (CO3)2-(aq)
One mole of sodium carbonate produces two moles of Na+ ions
Therefore 0.207 moles produces 0.414 moles of Na+ ions
= 0.414 moles of Na+ ions
Explanation:
In water
Na2CO3 --> 2Na+ (aq)+ (CO3)2-(aq)
In a limited reaction, the carbonate ion reacts with the water molecules as follows
(CO3)2-(aq) + H2O←→HCO3-(aq) + OH-(aq)
sodium carbonate or soda ash dissolves in water to give 2 sodium cations and one carbonate anion
Answer:
yes it is a danger.Copper doesn't break down in the environment, leading to its accumulation in plants and animals. Absorption of some copper into the body is essential for human health. Acute industrial exposure to copper fumes, dusts or mists can result in chronic copper poisoning.Copper is a mineral and an element essential to our everyday lives. It is a major industrial metal because of its high ductility, malleability, thermal and electrical conductivity and resistance to corrosion. It is an essential nutrient in our daily diet.
Answer:
Mechanism for top reaction is combustion while the side product at bottom path oximes
Explanation:
Hydroxiamine is a reducing agent that requires high temperature to combust in it'd ageous state to produced oxime while water is eliminated. The reverse is the case because the production of water during combustion I does not yield the fight result as it can e very irritating.
Increased temperature stimulates the protons to become free to combust and react with 2 butene and other aldehyde during chemical reaction.
Answer:
He means Explain the differences between mix and match. Give one example of each.
Explanation:
Boyle's law states that the volume of a fixed mass of a gas is inversely proportional to its temperature if<u> the temperature and the number of particles are constant.</u>
<h3>Further Explanation</h3><h3>Boyles’s law </h3>
- This gas law states that the volume of a fixed mass of a gas is inversely proportional to its pressure at constant absolute temperature.
- Therefore, when the volume of an ideal gas is increased at constant temperature then the pressure of the gas will also increase.
- Mathematically; Volume α 1/Pressure
Vα1/P
- Therefore, constant k, is = PV
<h3>Other gas Laws</h3><h3>Gay-Lussac’s law </h3>
- It states that at constant volume, the pressure of an ideal gas I directly proportional to its absolute temperature.
- Thus, an increase in pressure of an ideal gas at constant volume will result to an increase in the absolute temperature.
<h3>Charles’s law</h3>
- It states that the volume of a fixed mass of a gas is directly proportional to absolute temperature at constant pressure.
- Therefore, an increase in volume of an ideal gas causes a corresponding increase in its absolute temperature and vice versa while the pressure is held constant.
<h3>Dalton’s law </h3>
- It is also known as the Dalton’s law of partial pressure. It states that the total pressure of a mixture of gases is always equivalent to the total sum of the partial pressures of individual component gases.
- Partial pressure refers to the pressure of an individual gas if it occupies the same volume as the mixture of gases.
Keywords: Gas law, Boyles's law, pressure, volume, absolute temperature, ideal gas
<h3>Learn more about:</h3>
Level: High school
Subject: Chemistry
Topic: Gas laws
Sub-topic: Boyle's Law