Answer:
a. 3; b. 5; c. 10; d. 12
Explanation:
pH is defined as the negative log of the hydronium concentration:
pH = -log[H₃O⁺] (hydronium concentration)
For problems a. and b., HCl and HNO₃ are strong acids. This means that all of the HCl and HNO₃ would ionize, producing hydronium (H₃O⁺) and the conjugate bases Cl⁻ and NO₃⁻ respectively. Further, since all of the strong acid ionizes, 1 x 10⁻³ M H₃O⁺ would be produced for a., and 1.0 x 10⁻⁵ M H₃O⁺ for b. Plugging in your calculator -log[1 x 10⁻³] and -log[1.0 x 10⁻⁵] would equal 3 and 5, respectively.
For problems c. and d. we are given a strong base rather than acid. In this case, we can calculate the pOH:
pOH = -log[OH⁻] (hydroxide concentration)
Strong bases similarly ionize to completion, producing [OH⁻] in the process; 1 x 10⁻⁴ M OH⁻ will be produced for c., and 1.0 x 10⁻² M OH⁻ produced for d. Taking the negative log of the hydroxide concentrations would yield a pOH of 4 for c. and a pOH of 2 for d.
Finally, to find the pH of c. and d., we can take the pOH and subtract it from 14, giving us 10 for c. and 12 for d.
(Subtracting from 14 is assuming we are at 25°C; 14, the sum of pH and pOH, changes at different temperatures.)
Answer : The mass of nitric acid is, 214.234 grams.
Solution : Given,
Moles of nitric acid = 3.4 moles
Molar mass of nitric acid = 63.01 g/mole
Formula used :

Now put all the given values in this formula, we get the mass of nitric acid.

Therefore, the mass of nitric acid is, 214.234 grams.
Answer:
The base must be ethylamine.
Explanation:
The pH of solution of a weak base gives us an idea about the Kb of the base.


![pOH=-log[OH^{-}]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E%7B-%7D%5D)
![[OH^{-}]=0.0062M](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%5D%3D0.0062M)
The relation between Kb and hydroxide ion concentration is:
![Kb=\frac{[OH^{-}]^{2}}{[base]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BOH%5E%7B-%7D%5D%5E%7B2%7D%7D%7B%5Bbase%5D%7D)

Thus the weak base must be ethylamine.
Answer: D.kinectic energy
Explanation
Mass of medicinal agent taken = 1.2 g
the volume is 60 mL
Specific gravity = 1.20
So the mass of solution = specific gravity X volume = 1.20 * 60 = 72g
Now if we have increased the volume by 0.2 so the new volume = 60.2
New mass = 72 + 1.2 = 73.2
Specific gravity = mass / volume = 73.2 / 60.2 = 1.22 g/mL