Answer:
The answer to the question is 7200
Gravitational I think would be the answer, Hope this helps!
<span>AS T1,T2,T3 are the tensions in the ropes,assuming that there are Three blocks of mass 3m, 2m, and m.T3 is the string between 3m and 2m,T2 is the string between 2m and m ,T1 is the string attached to m thus T1 pulls the whole set of blocks along, so it must be the largest. T2 pulls the last
two masses, but T3 only pulls the last mass, so T3 < T2 < T1.</span>
Answer:
6.667 m/s
Explanation:
500 meters = 75 seconds
500 meters / 75 seconds = 6.667 m/s
Answer:
<em>The kinetic energy of a spinning disk will be reduced to a tenth of its initial kinetic energy if its moment of inertia is made five times larger, but its angular speed is made five times smaller.</em>
<em></em>
Explanation:
Let us first consider the initial characteristics of the angular motion of the disk
moment of inertia = 
angular speed = ω
For the second case, we consider the characteristics to now be
moment of inertia =
(five times larger)
angular speed = ω/5 (five times smaller)
Recall that the kinetic energy of a spinning body is given as

therefore,
for the first case, the K.E. is given as

and for the second case, the K.E. is given as


<em>this is one-tenth the kinetic energy before its spinning characteristics were changed.</em>
<em>This implies that the kinetic energy of the spinning disk will be reduced to a tenth of its initial kinetic energy if its moment of inertia is made five times larger, but its angular speed is made five times smaller.</em>