Answers:
a) 154.08 m/s=554.68 km/h
b) 108 m/s=388.8 km/h
Explanation:
<u>The complete question is written below:
</u>
<u></u>
<em>In 1977 off the coast of Australia, the fastest speed by a vessel on the water was achieved. If this vessel were to undergo an average acceleration of
, it would go from rest to its top speed in 85.6 s. </em>
<em>a) What was the speed of the vessel?
</em>
<em>
</em>
<em>b) If the vessel in the sample problem accelerates for 1.00 min, what will its speed be after that minute? </em>
<em></em>
<em>Calculate the answers in both meters per second and kilometers per hour</em>
<em></em>
a) The average acceleration
is expressed as:
(1)
Where:
is the variation of velocity in a given time
, which is the difference between the final velocity
and the initial velocity
(because it starts from rest).

Isolating
from (1):
(2)
(3)
(4)
If
and
then:
(4)
b) Now we need to find the final velocity when
:
<em></em>
(5)
(6)
Answer:
variations in great horned owl body size due to food supply can be acted on by natural selection.
Explanation:
Natural selection can help select great horned owl with smaller body size since it's an advantage in a place with smaller available food sources, compared to a bigger body size that will need more food. At first, birds with smaller body survive while those bigger ones die out, and the smaller birds pass on this genes to their offspring.
Answer:
variation in body size due to inherited traits can be acted on by natural selection
Explanation :
Variations in body size in body size due to inherited trait can be acted upon by natural selection by favoring the size that is best suited for the survival of the species. Those with these genes survive and pass it on to their offspring, while those with the unfavorable body size are wiped out.
Answer:
coal tar is one of the product of coal
Answer:
V = 8.34m/s
Explanation:
Given that
1/2ke^2 = 1/2mv^2 ......1
Where e = 3.75cm = (3.75/100)m
e = 0.0375m
K = 500 N/m
m = 10g = 10/1000
= 0.01kg
Substitute the values into equation 1
0.5×500×(0.0375)^2 = 0.5×0.01×v^2
250×0.001395 = 0.005v^2
0.348 = 0.005v^2
v^2 = 0.348/0.005
v^2 = 69.6
V = √69.6
V = 8.34m/s
The ball launches at the speed of V = 8.34m/s
Answer:
Explanation:
acceleration is the time rate of change of velocity
a = (51 - 20) / 3 = 10⅓ mi/hr/s
which should probably be converted to standard units.
10⅓ mi/hr/s(5280 ft/mi) / 3600 s/hr) = 15.15555... ≈ 15.2 ft/s²
which is roughly half the acceleration of gravity.