1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulijaS [17]
2 years ago
8

Which of the following bodies of water are included in the freshwater biome? I. rivers II. oceans III. lakes IV. streams A. I, I

II, and IV only B. III only C. I and IV only D. II and III only
Physics
2 answers:
maks197457 [2]2 years ago
5 0

Answer: the answer is A I, III, and IV only

Explanation:

Svetradugi [14.3K]2 years ago
3 0
The answer is A rivers, lakes, and streams don't contain salt.
You might be interested in
Two long, straight wires, one above the other, are seperated by a distance 2a2a and are parallel to the x−axisx−axis. Let the +y
kompoz [17]

Answer:

note:

<u>solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment</u>

Download docx
3 0
3 years ago
the 200 g baseball has a horizontal velocity of 30 m/s when it is struck by the bat, B, weighing 900 g, moving at 47 m/s. during
Ivanshal [37]

Solution :

Given :

Mass of the baseball, m = 200 g

Velocity of the baseball, u = -30 m/s

Mass of the baseball after struck by the bat, M = 900 g

Velocity of the baseball after struck by the bat, v = 47 m/s

According to the conservation of momentum,

Mv+mu=Mv_1+mv_2

(900 x 47) + (200 x -30)  = (900 x v_1) + (200 x v_2)

36300 =  (900 x v_1) + (200 x v_2)

9v_1 + 2v_2 = 363 ..............(i)

9v_1 = 363 - 2v_2

v_1=\frac{363 - 2v_2}{9}

The mathematical expression for the conservation of kinetic energy is

\frac{1}{2}Mv^2+\frac{1}{2}mu^2 = \frac{1}{2}Mv_1^2+\frac{1}{2}mv_2^2

\frac{1}{2}(900)(47)^2+\frac{1}{2}(200)(-30)^2 = \frac{1}{2}(900)v_1^2+\frac{1}{2}(200)v_2^2    ................(ii)

$(9)(14)^2+(2)(-30)^2 = (9)v_1^2+2v_2^2$  

21681 = 9v_1^2+2v_2^2

Substituting (i) in (ii)

21681= 9\left( \frac{363-2v_2}{9}\right)^2+2v_2^2

(363-2v_2)^2+18v_2^2=195129

(363)^2+18v_2^2-2(363)(2v_2)+(363)^2-195129=0

22v_2^2-145v_2-63360=0

Solving the equation, we get

v_2=96 \ m/s, -30 \ m/s

The negative velocity is neglected.

Therefore, substituting 96 m/s for v_2 in (i), we get

v_1=\frac{363-(2 \times 96)}{9}

     = 19

Thus, only impulse of importance is used to find final velocity.

8 0
3 years ago
a child is stationary on a swing. The child is given a push by a parent and the child starts swinging
Nesterboy [21]

Answer:

you havent given the full question

but im guessing momentum

momentum is the quantity of motion of a moving body, measured as a product of its mass and velocity or the impetus gained by a moving object.

Explanation:

as the child is pushed, it gathers momentum as its weight allows it be pushed forward, and the velocity is the speed driven by the amount of force the parent pushes on the child whilst they are swinging. The momentum is the result of this action

the equation that links these factors together are

p = mv

p = momentum

m = mass

v = velocity

hope i got it right ._.

3 0
1 year ago
Can someone please help me with this physics question? I'm desperate!
Lelu [443]

Answer:

a) 2·√10 seconds

b) Linda should be approximately 30.6 meters

c) Jenny's speed at the 100-m mark is approximately 6.325 m/s

Explanation:

The speed with which Linda is running = 8.6 m/s

The point Jenny starts = The 80-m mark

The acceleration of Jenny = 1.0 m/s²

a) The time it takes Jenny to run from the 80-m mark to the 100-m mark, <em>t</em>, is given as follows

Δs = u·t + (1/2)·a·t²

Δs = Distance = 100-m - 80-m = 20-m

u = The initial velocity of Jenny = 0

a = Jenny's acceleration = 1.0 m/s²

∴ 20 = 0×t + (1/2) × 1 × t² = t²/2

20 = t²/2

t = √(20 × 2) = 2·√10

The time it takes Jenny to run from the 80-m mark to the 100-m mark = 2·√10 seconds

b) The distance Linda runs in t = 2·√10 seconds, d = v × t

Given that Linda's velocity, v = 8.6 m/s, we have;

d = 8.0 × 2·√10 = 16·√10

The distance Linda runs in t = 2·√10 seconds = 16·√10 meters ≈ 50.6 meters

Therefore, Linda should be approximately (50.6 - 20) meters = 30.6 meters behind Jenny when Jenny starts running

c) Jenny's speed at the 100 m mark is given as follows;

v = u + a·t

t = 2·√10 seconds, a = 1.0 m/s², u = 0

∴ v = 0×t + 1.0×2·√10 = 2·√10 ≈ 6.325

Jenny's speed at the 100-m mark ≈ 6.325 m/s

3 0
2 years ago
Consider a cyclotron in which a beam of particles of positive charge q and mass m is moving along a circular path restricted by
Ulleksa [173]

A) v=\sqrt{\frac{2qV}{m}}

B) r=\frac{mv}{qB}

C) T=\frac{2\pi m}{qB}

D) \omega=\frac{qB}{m}

E) r=\frac{\sqrt{2mK}}{qB}

Explanation:

A)

When the particle is accelerated by a potential difference V, the change (decrease) in electric potential energy of the particle is given by:

\Delta U = qV

where

q is the charge of the particle (positive)

On the other hand, the change (increase) in the kinetic energy of the particle is (assuming it starts from rest):

\Delta K=\frac{1}{2}mv^2

where

m is the mass of the particle

v is its final speed

According to the law of conservation of energy, the change (decrease) in electric potential energy is equal to the increase in kinetic energy, so:

qV=\frac{1}{2}mv^2

And solving for v, we find the speed v at which the particle enters the cyclotron:

v=\sqrt{\frac{2qV}{m}}

B)

When the particle enters the region of magnetic field in the cyclotron, the magnetic force acting on the particle (acting perpendicular to the motion of the particle) is

F=qvB

where B is the strength of the magnetic field.

This force acts as centripetal force, so we can write:

F=m\frac{v^2}{r}

where r is the radius of the orbit.

Since the two forces are equal, we can equate them:

qvB=m\frac{v^2}{r}

And solving for r, we find the radius of the orbit:

r=\frac{mv}{qB} (1)

C)

The period of revolution of a particle in circular motion is the time taken by the particle to complete one revolution.

It can be calculated as the ratio between the length of the circumference (2\pi r) and the velocity of the particle (v):

T=\frac{2\pi r}{v} (2)

From eq.(1), we can rewrite the velocity of the particle as

v=\frac{qBr}{m}

Substituting into(2), we can rewrite the period of revolution of the particle as:

T=\frac{2\pi r}{(\frac{qBr}{m})}=\frac{2\pi m}{qB}

And we see that this period is indepedent on the velocity.

D)

The angular frequency of a particle in circular motion is related to the period by the formula

\omega=\frac{2\pi}{T} (3)

where T is the period.

The period has been found in part C:

T=\frac{2\pi m}{qB}

Therefore, substituting into (3), we find an expression for the angular frequency of motion:

\omega=\frac{2\pi}{(\frac{2\pi m}{qB})}=\frac{qB}{m}

And we see that also the angular frequency does not depend on the velocity.

E)

For this part, we use again the relationship found in part B:

v=\frac{qBr}{m}

which can be rewritten as

r=\frac{mv}{qB} (4)

The kinetic energy of the particle is written as

K=\frac{1}{2}mv^2

So, from this we can find another expression for the velocity:

v=\sqrt{\frac{2K}{m}}

And substitutin into (4), we find:

r=\frac{\sqrt{2mK}}{qB}

So, this is the radius of the cyclotron that we must have in order to accelerate the particles at a kinetic energy of K.

Note that for a cyclotron, the acceleration of the particles is achevied in the gap between the dees, where an electric field is applied (in fact, the magnetic field does zero work on the particle, so it does not provide acceleration).

6 0
3 years ago
Other questions:
  • The woman was standing on a cliff 30 meters above where she landed. There was a safety fence 4 meters from the cliff edge that w
    15·1 answer
  • The half-life of cobalt-60 is 5.3 years. If you have a sample that contains 10.0 g of the isotope, how much will be left after 1
    6·1 answer
  • The pressure inside a hydrogen-filled container was 2.10 atm at 21 ∘C. What would the pressure be if the container was heated to
    11·2 answers
  • Thirty-five percent of all school-age pedestrians killed in school transportation-related crashes were between the ages of
    12·1 answer
  • A. In what frame of reference does special relativity apply? b. In what frames must general relativity be used? c. Describe what
    15·1 answer
  • You and I see, hear, and think with ___________________________. Waves carry _____________________. The wave in the speaker, on
    6·1 answer
  • This diagram shows a skier moving down a hill. Which statement best describes the skier? The skier has potential and kinetic ene
    5·2 answers
  • 2 points
    5·2 answers
  • Can anyone help me with this? Will give brainliest if correct!
    10·1 answer
  • The chemical formula for Glucose is C12H6012.<br> True<br> False
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!