1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sati [7]
2 years ago
13

A hanging weight, with a mass of m1 = 0.365 kg, is attached by a string to a block with mass m2 = 0.825 kg as shown in the figur

e below. The string goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R1 = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As the weight falls, the block slides on the table, and the coefficient of kinetic friction between the block and the table is k = 0.250. At the instant shown, the block is moving with a velocity of vi = 0.820 m/s toward the pulley. Assume that the pulley is free to spin without friction, that the string does not stretch and does not slip on the pulley, and that the mass of the string is negligible. Using energy methods, find the speed of the block (in m/s) after it has moved a distance of 0.700 m away from the initial position shown.

Physics
1 answer:
morpeh [17]2 years ago
5 0

The speed of the block after it has moved the given distance away from the initial position is 1.1 m/s.

<h3>Angular Speed of the pulley </h3>

The angular speed of the pulley after the block m1 fall through a distance, d, is obatined from conservation of energy and it is given as;

K.E = P.E

\frac{1}{2} mv^2 + \frac{1}{2} I\omega^2 = mgh\\\\\frac{1}{2} m_2v_0^2 + \frac{1}{2} \omega^2(m_1R^2_2 + m_2R_2^2) + \frac{1}{2} \omega^2( \frac{1}{2} MR_1^2 + \frac{1}{2} MR_2^2) = m_1gd- \mu_km_2gd\\\\\frac{1}{2} m_2v_0^2 + \frac{1}{2} \omega^2[R_2^2(m_1 + m_2)+ \frac{1}{2} M(R_1^2 + R_2^2)] = gd(m_1 - \mu_k m_2)\\\\

\frac{1}{2} m_2v_0 + \frac{1}{4} \omega^2[2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] = gd(m_1 - \mu_k m_2)\\\\2m_2v_0 + \omega^2 [2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] = 4gd(m_1 - \mu_k m_2)\\\\\omega^2 [2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] =  4gd(m_1 - \mu_k m_2) - 2m_2v_0^2\\\\\omega^2 = \frac{ 4gd(m_1 - \mu_k m_2) - 2m_2v_0^2}{2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)} \\\\\omega = \sqrt{\frac{ 4gd(m_1 - \mu_k m_2) - 2m_2v_0^2}{2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)}} \\\\

Substitute the given parameters and solve for the angular speed;

\omega = \sqrt{\frac{ 4(9.8)(0.7)(0.365 \ - \ 0.25\times 0.825) - 2(0.825)(0.82)^2}{2(0.03)^2(0.365 \ + \ 0.825)\  \ +\  \ 0.35(0.02^2\  + \ 0.03^2)}} \\\\\omega = \sqrt{\frac{3.25}{0.00214\ + \ 0.000455 } } \\\\\omega = 35.39 \ rad/s

<h3>Linear speed of the block</h3>

The linear speed of the block after travelling 0.7 m;

v = ωR₂

v = 35.39 x 0.03

v = 1.1 m/s

Thus, the speed of the block after it has moved the given distance away from the initial position is 1.1 m/s.

Learn more about conservation of energy here: brainly.com/question/24772394

You might be interested in
A tank contains gas at 13.0°C pressurized to 10.0 atm. The temperature of the gas is increased to 95.0°C, and half the gas is re
fomenos

Answer:

The pressure of the remaining gas in the tank is 6.4 atm.

Explanation:

Given that,

Temperature T = 13+273=286 K

Pressure = 10.0 atm

We need to calculate the pressure of the remaining gas

Using equation of ideal gas

PV=nRT

For a gas

P_{1}V_{1}=nRT_{1}

Where, P = pressure

V = volume

T = temperature

Put the value in the equation

10\times V=nR\times286....(I)

When the temperature of the gas is increased

Then,

P_{2}V_{2}=\dfrac{n}{2}RT_{2}....(II)

Divided equation (I) by equation (II)

\dfrac{P_{1}V}{P_{2}V}=\dfrac{nRT_{1}}{\dfrac{n}{2}RT_{2}}

\dfrac{10\times V}{P_{2}V}=\dfrac{nR\times286}{\dfrac{n}{2}R368}

P_{2}=\dfrac{10\times368}{2\times286}

P_{2}= 6.433\ atm

P_{2}=6.4\ atm

Hence, The pressure of the remaining gas in the tank is 6.4 atm.

4 0
3 years ago
Any one tell me about the earth rotation it rotatining or not with any proof? ​
Dafna11 [192]
The proof that the earth is rotating is the happens of night and day also the seasons, eg. winter, summer, autumn.
6 0
3 years ago
3. Explain why it is, regardless of the location, at a certain distance between the two points, you will perceive the two points
faust18 [17]

Answer:

Hello your question is missing some parts attached below is the missing part of your question

answer: <em>many primary sensory Neurons will converge and become a single Neuron and the single Neuron will send a single harmonized signal to the Brain</em>.

Explanation:

The reason regardless of the location that will make you perceive the two points as a single point rather than as two distinct points is that many primary sensory Neurons will converge and become a single Neuron and the single Neuron will send a single harmonized signal to the Brain.

3 0
2 years ago
Consider an ideal monatomic gas of N particles with mass m in thermal equilibrium at a temperature T. The gas is contained in a
harina [27]

Answer:

K.E.=\dfrac{3}{2}KT

Explanation:

Given that

Number of particle =N

Equilibrium temperature= T

Side of cube = L

Gravitational acceleration =g

The kinetic energy of an atom  given as

K.E.=\dfrac{3}{2}KT

Where

Equilibrium temperature= T

Boltzmann constant =K

        K =1.380649×10−23 J/K

3 0
3 years ago
What does this tell you about the direction and magnitude of the acceleration acting on the cannonball throughout its duration o
Lyrx [107]

Answer:

Direction remains the same but velocity changes.

Explanation:

This tell us about the direction and magnitude of the acceleration acting on the cannonball throughout its duration of flight that its direction remains the same but its magnitude of the acceleration is continuously changing. The cannonball moves in the direction in which the cannon was fired while the velocity is highest after the fire but decreases when goes higher and when it comes back to the ground so its velocity increases against so we can say that both positive and negative acceleration occurs. Positive acceleration means increase in the magnitude of velocity whereas negative acceleration means decrease in velocity.

3 0
3 years ago
Other questions:
  • What do all wetlands have in common?
    15·2 answers
  • Which of the following seismic wave moves the fastest
    11·1 answer
  • A 102 kg football player runs at a speed of 8 m/s to sack the quarterback. What is
    7·1 answer
  • What is the difference between longitude and latitude?
    12·1 answer
  • Small-plane pilots regularly compete in "message drop" competitions, dropping heavy weights (for which air resistance can be ign
    7·1 answer
  • All of these are likely to speed up the rate of a reaction except decreasing the surface area. increasing the temperature. incre
    5·1 answer
  • How do you calculate a bearing angle and its equivalent angle?
    8·1 answer
  • The electric field 0.500 m from a charge is 3370 N/C, pointing away from the charge. What is the charge? Include the sign of the
    15·1 answer
  • Pedro is planning to model how changes in weather affect evaporation from lakes for his first experiment he wants to test how hu
    5·1 answer
  • A concave mirror of focal length 10cm forms an inverted image of 40cm from the mirror and 4cm high. Determine the position and s
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!