It's true IF ' m ' stands for mass and ' v ' stands for acceleration. Otherwise it's false.
Answer:
the buoyant force on the chamber is F = 7000460 N
Explanation:
the buoyant force on the chamber is equal to the weight of the displaced volume of sea water due to the presence of the chamber.
Since the chamber is completely covered by water, it displaces a volume equal to its spherical volume
mass of water displaced = density of seawater * volume displaced
m= d * V , V = 4/3π* Rext³
the buoyant force is the weight of this volume of seawater
F = m * g = d * 4/3π* Rext³ * g
replacing values
F = 1025 kg/m³ * 4/3π * (5.5m)³ * 9.8m/s² = 7000460 N
Note:
when occupied the tension force on the cable is
T = F buoyant - F weight of chamber = 7000460 N - 87600 kg*9.8 m/s² = 6141980 N
Answer:
the acceleration is reduced by gravity
a = (15 / .35) - [9.8 * sin(65º)]
Explanation:
break the launch vector into two components, vertical and horizontal
Force Net Vertical=-9.8*.350+15cos65 N
force net horizonal=15sin65
initial acceleration= force/mass= (-9.8+15/.350*cos65)j+(15/.350*sin65)i
using i,j vectors..
Answer:
The compass will indicate a turn to the left.
Explanation:
The magnetic compass has a needle pointing towards north. It is used for navigation and it shows direction with respect to the geographical cardinal direction.
As we move to the right of the northerly heading in northern Hemisphere, the direction of needle will move towards left but with a faster rate as now the direction of north is no his left.
This shows the compass if following its direction properly.