Explanation:
no.A (He) I think.............
Answer:
The mass is 1.4701 grams and the moles is 0.01.
Explanation:
Based on the given question, the volume of the solution is 100 ml or 0.1 L and the molarity of the solution is 0.100 M. The moles of the solute (in the given case calcium chloride dihydride (CaCl2. H2O) can be determined by using the formula,
Molarity = moles of solute/volume of solution in liters
Now putting the values we get,
0.100 = moles of solute/0.1000
Moles of solute = 0.100 * 0.1000
= 0.01 moles
The mass of CaCl2.2H2O can be determined by using the formula,
Moles = mass/molar mass
The molar mass of CaCl2.2H2O is 147.01 gram per mole. Now putting the values we get,
0.01 = mass / 147.01
Mass = 147.01 * 0.01
= 1.4701 grams.
<h2>Let us predict the gas and liquid products in option </h2>
Explanation:
option 1 : 2 upper H g upper O (s) right arrow 2 upper H g (l) plus upper O subscript 2 (g).
Chemical reaction
It is the reactants react to form products .
Chemical equation
It is the method of representing reaction in terms of moles , specifying states , symbols , molecular formulas etc .
This actually gives the complete info about the reaction .
In the above asked question or any other question we can specify the states by writting :
Solid as "S".
Liquid as "L"
Gas as (g).
Answer : The pressure of hydrogen gas is, 739.3 torr
Explanation :
As we are given:
Vapor pressure of water = 18.7 torr
Barometric pressure = 758 torr
Now we have to calculate the pressure of hydrogen gas.
Pressure of hydrogen gas = Barometric pressure - Vapor pressure of water
Pressure of hydrogen gas = 758 torr - 18.7 torr
Pressure of hydrogen gas = 739.3 torr
Therefore, the pressure of hydrogen gas is, 739.3 torr
Answer:
Heat lost to the surroundings
Heat lost to the thermometer
Explanation:
All changes in heat, or energy, can be explained. Many of the reactions or changes we see in the world involve the conversion of energy. For example as we heat up a substance (eg. water), the amount of energy we put in should give us an exact temperature. However, this is a "perfect world" scenario, and does not occur in real life. Whenever heat is added to a substance like water, we always need to account for the energy that is going to be lost. For example, heat lost to evaporation or even the effect of measuring the temperature with a thermometer (the introduction of anything including a thermometer will affect the temperature).