Answer:
Nacelle. The nacelle sits atop the tower and contains the gearbox, low- and high-speed shafts, generator, and brake.
Explanation:
Answer : The concentration of NOBr after 95 s is, 0.013 M
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant =
t = time taken = 95 s
[A] = concentration of substance after time 't' = ?
= Initial concentration = 0.86 M
Now put all the given values in above equation, we get:
![0.80=\frac{1}{95}\left (\frac{1}{[A]}-\frac{1}{(0.86)}\right)](https://tex.z-dn.net/?f=0.80%3D%5Cfrac%7B1%7D%7B95%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%280.86%29%7D%5Cright%29)
[A] = 0.013 M
Hence, the concentration of NOBr after 95 s is, 0.013 M
Answer:
0. 414
Explanation:
Octahedral interstitial lattice sites.
Octahedral interstitial lattice sites are in a plane parallel to the base plane between two compact planes and project to the center of an elementary triangle of the base plane.
The octahedral sites are located halfway between the two planes. They are vertical to the locations of the spheres of a possible plane. There are, therefore, as many octahedral sites as there are atoms in a compact network.
The Octahedral interstitial void ratio range is 0.414 to 0.732. Thus, the minimum cation-to-anion radius ratio for an octahedral interstitial lattice site is 0. 414.
black would be BB .
dominant gene is B.
phenotyope is where it says white fur.
recessive gene is b.
white is bb