Answer:
p=0.25
Step-by-step explanation:
Given that a club can select one member to attend a conference. All of the club officers want to attend. There are a total of four officers, and their designated positions within the club are President (P), Vice dash President (Upper V )comma Secretary (Upper S )comma nbspand Treasurer (Upper T ).
Sample space would be
a){ {P}, {V}, {S} {T}} is the sample space with notations standing for as given in the question
b) Each sample is equally likely. Hence we have equal chances for selecting any one out of the four.
If probability of selecting a particular sample of size I is p, the by total probability axiom we have
\begin{gathered}4p =1\\p =0.25\end{gathered}
4p=1
1.1, 0.10299, 0.1038, 0.9 im pretty sure
we'd do the same as before on this one as well.
if we take 27.99 to be the 100%, what is 12 off of it in percentage?

Answer:
Given A triangle ABC in which
∠C =90°,∠A=20° and CD ⊥ AB.
In Δ ABC
⇒∠A + ∠B +∠C=180° [ Angle sum property of triangle]
⇒20° + ∠B + 90°=180°
⇒∠B+110° =180°
∠B =180° -110°
∠B = 70°
In Δ B DC
∠BDC =90°,∠B =70°,∠BC D=?
∠BDC +,∠B+∠BC D=180°[ angle sum property of triangle]
90° + 70°+∠BC D =180°
∠BC D=180°- 160°
∠BC D = 20°
In Δ AC D
∠A=20°, ∠ADC=90°,∠AC D=?
∠A + ∠ADC +∠AC D=180° [angle sum property of triangle]
20°+90°+∠AC D=180°
110° +∠AC D=180°
∠AC D=180°-110°
∠AC D=70°
So solution are, ∠AC D=70°,∠ BC D=20°,∠DB C=70°