<span>C) 4.5 billion years old</span>
I believe the answer is:
~D. Very dusty irregular galaxy.
Hope this helps!!!
.........................|||||||..............................
-- Although it's not explicitly stated in the question,we have to assume that
the surface is frictionless. I guess that's what "smooth" means.
-- The total mass of both blocks is (1.5 + 0.93) = 2.43 kg. Since they're
connected to each other (by the string), 2.43 kg is the mass you're pulling.
-- Your force is 6.4 N.
Acceleration = (force)/(mass) = 6.4/2.43 m/s²<em>
</em> That's about <em>2.634 m/s²</em> <em>
</em>(I'm going to keep the fraction form handy, because the acceleration has to be
used for the next part of the question, so we'll need it as accurate as possible.)
-- Both blocks accelerate at the same rate. So the force on the rear block (m₂) is
Force = (mass) x (acceleration) = (0.93) x (6.4/2.43) = <em>2.45 N</em>.
That's the force that's accelerating the little block, so that must be the tension
in the string.
Answer:
52 rad
Explanation:
Using
Ф = ω't +1/2αt²................... Equation 1
Where Ф = angular displacement of the object, t = time, ω' = initial angular velocity, α = angular acceleration.
Since the object states from rest, ω' = 0 rad/s.
Therefore,
Ф = 1/2αt²................ Equation 2
make α the subject of the equation
α = 2Ф/t².................. Equation 3
Given: Ф = 13 rad, t = 2.5 s
Substitute into equation 3
α = 2(13)/2.5²
α = 26/2.5
α = 4.16 rad/s².
using equation 2,
Ф = 1/2αt²
Given: t = 5 s, α = 4.16 rad/s²
Substitute into equation 2
Ф = 1/2(4.16)(5²)
Ф = 52 rad.