Answer:
distance between the dime and the mirror, u = 0.30 m
Given:
Radius of curvature, r = 0.40 m
magnification, m = - 2 (since,inverted image)
Solution:
Focal length is half the radius of curvature, f = 
f = 
Now,
m = - 
- 2 = -
= 2 (2)
Now, by lens maker formula:


v =
(3)
From eqn (2):
v = 2u
put v = 2u in eqn (3):
2u = 
2 = 
2(u - 0.20) = 0.20
u = 0.30 m
This question is probably referring to heat energy transferring from the car to its surroundings.
Answer:
<h2> 27m/s</h2>
Explanation:
Given data
initital velocity u=15m/s
deceleration a=3m/s^2
time t= 4 seconds
final velocity v= ?
Applying the expression
v=u+at------1
substituting our data into the expression we have
v=15+3*4
v=15+12
v=27m/s
The velocity after 4 seconds is 27m/s
The air flows slower in a bigger space. The air in a small space hit each other heating up, and move faster and faster. is that what your asking?
Answer:
speed when the block had slid 3.40 m is 2.68 m/s
Explanation:
given data
distance = 6.80 m
speed = 3.80 m/s
to find out
speed when the block had slid 3.40 m
solution
we will apply here equation of motion that is
v²-u² = 2×a×s ..............1
here s is distance, a is acceleration and v is speed and u is initial speed that is 0
so put here all value in equation 1 to get a
v²-u² = 2×a×s
3.80²-0 = 2×a×6.80
a = 1.06 m/s²
so
speed when distance 3.40 m
from equation 1 put value
v²-u² = 2×a×s
v²-0 = 2×1.06×3.40
v² = 7.208
v = 2.68
so speed when the block had slid 3.40 m is 2.68 m/s