The time constant determines how long it takes for the capacitor to charge.
To find the answer, we have to know more about the time constant of the capacitor.
<h3>What is time constant?</h3>
- The time it takes for a capacitor to discharge 36.8% of its charge in a discharging circuit or charge up to 63.2% of its maximum capacity in a charging circuit, given that it has no initial charge, is the time constant of a resistor-capacitor series combination.
- The circuit's reaction to a step-up (or constant) voltage input is likewise determined by the time constant.
- As a result, the time constant determines the circuit's cutoff frequency.
Thus, we can conclude that, the time constant determines how long it takes for the capacitor to charge.
Learn more about the time constant here:
brainly.com/question/17050299
#SPJ4
Answer:


Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
= Mass of sphere = 2000 kg
= Mass of other sphere = 2.1 kg
r = Distance between spheres
Force of gravity is given by

The gravitational force is 

The gravitational force is 
Answer:A solenoid is a simple electromagnetic device consisting of a coiled electric wire, wrapped in a 3D circular pattern. When electric current is passed through the wire, the solenoid acts like a magnet with N and S poles at the ends of the coil.
When a ferromagnetic material rod is permanently placed inside the solenoid, the metal greatly increases the magnetic effect and becomes a permanent electromagnet. Moreover, it can also be used as an electrical switch by drawing in or pushing out a ferromagnetic material like an iron rod. Depending on the directions of the rod and the electrical current the switching action takes place.
Given figure represents the solenoid as electromagnet and the switching action.
Explanation:
Answer:
Explanation:
As the contour lines have roughly the same spacing but the actual topography is much steeper, the lines on the mountainous map represent a larger vertical spacing than the lines on the gradual hills.
The
resulting vector is the sum of the T + U + V vectors component to component.
Therefore, if you want to find the x component of the resulting vector, the
correct formula is:
<span>Tx + Ux + Vx</span>