Answer:
A. The time taken for the car to stop is 3.14 secs
B. The initial velocity is 81.64 ft/s
Explanation:
Data obtained from the question include:
Acceleration (a) = 26ft/s2
Distance (s) = 256ft
Final velocity (V) = 0
Time (t) =?
Initial velocity (U) =?
A. Determination of the time taken for the car to stop.
Let us obtain an express for time (t)
Acceleration (a) = Velocity (V)/time(t)
a = V/t
Velocity (V) = distance (s) /time (t)
V = s/t
a = s/t^2
Cross multiply
a x t^2 = s
Divide both side by a
t^2 = s/a
Take the square root of both side
t = √(s/a)
Now we can obtain the time as follow
Acceleration (a) = 26ft/s2
Distance (s) = 256ft
Time (t) =..?
t = √(s/a)
t = √(256/26)
t = 3.14 secs
Therefore, the time taken for the car to stop is 3.14 secs
B. Determination of the initial speed of the car.
V = U + at
Final velocity (V) = 0
Deceleration (a) = –26ft/s2
Time (t) = 3.14 sec
Initial velocity (U) =.?
0 = U – 26x3.14
0 = U – 81.64
Collect like terms
U = 81.64 ft/s
Therefore, the initial velocity is 81.64 ft/s
I'm not sure what "60 degree horizontal" means.
I'm going to assume that it means a direction aimed 60 degrees
above the horizon and 30 degrees below the zenith.
Now, I'll answer the question that I have invented.
When the shot is fired with speed of 'S' in that direction,
the horizontal component of its velocity is S cos(60) = 0.5 S ,
and the vertical component is S sin(60) = S√3/2 = 0.866 S . (rounded)
-- 0.75 of its kinetic energy is due to its vertical velocity.
That much of its KE gets used up by climbing against gravity.
-- 0.25 of its kinetic energy is due to its horizontal velocity.
That doesn't change.
-- So at the top of its trajectory, its KE is 0.25 of what it had originally.
That's E/4 .
Answer:
a) 4500 cycles b) 0.0667s c) 6.67s
Explanation:
a) 15 Hz= 15 cycles/ s
5 mins= 300s
15 cycles/s * 300s= 4500 cycles
b) Period= 1/ frequency
Period= 1/ 15 cycles/s
Period= 0.0667s
c) Period * number of revolutions= time
0.0667 * 100= 6.67s
Answer: False
Explanation: The circulatory system of the body consists of the heart, blood vessels and blood. The deoxygenated blood from the body is carried to the heart.
Here, the deoxygentaed blood is converted into oxygenated by removing carbon dioxide from them and making it oxygenated.
The impure blood from the body is collected by the right ventricle and transported to the lungs for purification and then transported to the body.
Based on the law of conservation of energy, we know that we can't create energy, machines can only convert one type of energy into another. So, if we want to improve a machines's ability then we need to reduce it's loss energy (part of energy which is useless). Out of all the options only Option C fits best with it.
In short, Your Answer would be Option C
Hope this helps!