<h2>
Answer: 0.17</h2>
Explanation:
The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":
(1)
Where:
is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing
is the Stefan-Boltzmann's constant.
is the Surface area of the body
is the effective temperature of the body (its surface absolute temperature) in Kelvin.
However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close. So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:
(2)
Where is the body's emissivity
(the value we want to find)
Isolating from (2):
(3)
Solving:
(4)
Finally:
(5) This is the body's emissivity
Answer:
Explanation:
The frequency of a wave can be found using the following formula.
where <em>f</em> is the frequency, <em>v</em> is the velocity/wave speed, and λ is the wavelength.
The wavelength is 10 meters and the velocity is 200 meters per second.
- 1 m/s can also be written as 1 m*s^-1
Therefore:
Substitute the values into the formula.
Divide and note that the meters (m) will cancel each other out.
- 1 s^-1 is equal to Hertz
- Therefore, our answer of 20 s^-1 is equal to 20 Hz
The frequency of the wave is <u>20 Hertz</u>
Answer:
It takes 77 N
Explanation:
Using Newton's second law of motion, F=ma (Force equals mass times acceleration. Since the mass of the couch is 385 kg and the target acceleration is 0.2 m/s, you simply multiply mass times acceleration (ma) to get the total force, or 77 N.
<em>False</em>
Explanation:
The electrons cloud patterns are extremely complex and is of no importance to the discussion of electric charge in the atom. More important is the fact that electrons are labile; that is, they can be <em>transferred</em> from one atom to the next. It is through electronic transfer that atoms become charged.