Answer:
B) 1.2 N, toward the center of the circle
Explanation:
The circumference of the circle is:
C = 2πr
C = 2π (0.70 m)
C = 4.40 m
So the velocity of the ball is:
v = C/t
v = 4.40 m / 0.60 s
v = 7.33 m/s
Sum of the forces in the radial direction:
∑F = ma
T = m v² / r
T = (0.015 kg) (7.33 m/s)² / (0.70 m)
T = 1.2 N
The tension force is 1.2 N towards the center of the circle.
Answer:
M = 0.730*m
V = 0.663*v
Explanation:
Data Given:

Conservation of Momentum:

Energy Balance:

Substitute Eq 2 into Eq 1

Using Eq 1

Answer:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Explanation:
The Impulse Theorem states that the impulse experimented by the hockey park is equal to the vectorial change in its linear momentum, that is:
(1)
Where:
- Impulse, in kilogram-meters per second.
- Mass, in kilograms.
- Initial velocity of the hockey park, in meters per second.
- Final velocity of the hockey park, in meters per second.
If we know that
,
and
, then the impulse applied by the stick to the park is approximately:
![I = (0.2\,kg)\cdot \left(35\,\hat{i}\right)\,\left[\frac{m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%20%280.2%5C%2Ckg%29%5Ccdot%20%5Cleft%2835%5C%2C%5Chat%7Bi%7D%5Cright%29%5C%2C%5Cleft%5B%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%5D)
![I = 7\,\hat{i}\,\left[\frac{kg\cdot m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%207%5C%2C%5Chat%7Bi%7D%5C%2C%5Cleft%5B%5Cfrac%7Bkg%5Ccdot%20m%7D%7Bs%7D%20%5Cright%5D)
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Answer:
the first one is Primary
the second one I think it's Mature but I don't know