All elements are made up of atoms. ➢ Atoms are made up of protons, neutrons, and electrons. Two different kinds of atoms can combine to form a compound. A molecule is a combination of atoms that cannot be broken apart while still retaining the same properties as the larger substance that it is a part of.
Answer:
Francium (Fr)
Explanation:
From the given choices, francium will have the lowest ionization energy.
Ionization energy is the energy required to remove the most loosely held electron within an atom.
The magnitude of the ionization energy depends on the characteristics of the atom in relation to its nuclear charge, atomic radius, stability etc.
- Generally on the periodic table, ionization energy increases from left to right on the table
- As you go from metals to non-metals and to gases, the value of the ionization energy increases steadily.
- Down the group, the value reduces.
- Since Francium is the most metallic of all the given choices, it has the highest ionization energy.
Answer:
Mostly Para
Explanation:
First, let's assume that the molecule is the toluene (A benzene with a methyl group as radical).
Now the nitration reaction is a reaction in which the nitric acid in presence of sulfuric acid, react with the benzene molecule, to introduce the nitro group into the molecule. The nitro group is a relative strong deactiviting group and is metha director, so, further reactions that occur will be in the metha position.
Now, in this case, the methyl group is a weak activating group in the molecule of benzene, and is always ortho and para director for the simple fact that this molecule (The methyl group) is a donor of electrons instead of atracting group of electrons. Therefore for these two reasons, when the nitration occurs,it will go to the ortho or para position.
Now which position will prefer to go? it's true it can go either ortho or para, however, let's use the steric hindrance principle. Although the methyl group it's not a very voluminous and big molecule, it still exerts a little steric hindrance, and the nitro group would rather go to a position where no molecule is present so it can attach easily. It's like you have two doors that lead to the same place, but in one door you have a kid in the middle and the other door is free to go, you'll rather pass by the door which is free instead of the door with the kid in the middle even though you can pass for that door too. Same thing happens here. Therefore the correct option will be mostly para.
Answer:
False
Explanation:
The ideas were not proposed