Answer:
Explanation:
The formula of the reaction:
KClO₂ → KCl + O₂
To assign oxidation numbers, we have to obey some rules:
- Elements in an uncombined state or one whose atoms combine with one another to form molecules have an oxidation number of zero.
- The charge on simple ions signifies their oxidation number.
- The algebraic sum of all the oxidation number of all atoms in a neutral compound is zero. For radicals with charges, their oxidation number is the charge.
The oxidation number of K in KClO₂:
K + (-1) + 2(-2) = 0
K-5 = 0
K = +5
The oxidation number of K in KCl:
K + (-1) = 0
K = +1
The oxidation number Cl in KClO₂ is -1
For Cl in KCl, the oxidation number is -1
For O in KClO₂, the oxidation number is (2 x -2) = -4
For O in O₂, the oxidation number is 0
K moves from an oxidation state of +5 to +1. This is a gain of electrons and K has undergone reduction. We then say K is reduced.
O moves from an oxidation state of -4 to 0. This is a loss of electrons and O has undergone oxidation. We say O is oxidized.
The role of a spark plug is to supply some of the energy of activation for the combustion reaction.
<u>Explanation:</u>
- A Spark plug is a tiny bolt of lightning in which a spark of electricity is emitted across a gap creating the ignition of the combustion chamber thereby starting the engine. By putting an engine piston in motion we can power up which produces a smooth burn of the compressed air-fuel mixture.
- An electrical device that fits into the cylinder head and ignites compressed aerosol gasoline by an electric spark. They have an insulated electrode connected to a coil that ignites thereby producing sparks.
- The spark plug works as a heat exchanger. They tend to pull unwanted thermal energy from the combustion chamber and heat is transferred to the engine's cooling system. Thus they supply some of the energy for the activation of engines.
The bond angles a and b are 120° respectively. The bond angle c is 111.4° .while the bond angle d is 120°. The bond angles e and f are 120° respectively.
In the carbonate ion, all the bond angles and bond lengths are equal hence three equivalent resonance structures can be drawn for the ion. All the bond angles, ( a and b) in carbonate ion all have bond angle of 120°.
The bond angle marked c in OCCl2 has a bond angle 111.4°, the bond angle marked d in the compound has the bond angle, 120°.
There are three bond angles present in the nitrate (NO3-) ion. Three resonance structures contribute to this bond. Based on these structures, the bond angles e and f in the molecule is 120°.
Learn more: brainly.com/question/20339399
Answer:
When <em>a scientist on Earth drops a hammer and a feather at the same time an astronaut on the moon drops a hammer and a feather, the result</em> expected is that <em>the hammer hits the ground before the feather on Earth, and the hammer and feather hit at the same time on the moon (option D).</em>
Explanation:
In the abscence of atmosphere (vacuum), the objects fall in free fall. This is, the only force acting on the objects is the gravitational pull, which is directed vertlcally downward.
Under such absecence of air, the equations that rules the motion are:
- V = Vo + gt
- d = Vo + gt² / 2
- Vf² = Vo² + 2gd
As you see, all those equations are independent of the mass and shape of the object. This explains why <em>when an astronaut on the moon drops a hammer and a feather at the same time</em>, <em>the hammer and feather hit at the same time on the moon</em>, a space body where the gravitational attraction is so small (approximately 1/6 of the gravitational acceleration on Earth) that does not retain atmosphere.
On the other hand, the air (atmosphere) present in Earth will exert a considerable drag force on the feather (given its shape and small mass), slowing it down, whereas, the effect of the air on the hammer is almost neglectable. In general and as an approximation, the motion of the heavy bodies that fall near the surface is ruled by the free fall equations shown above, so, <em>the result </em>that is<em> expected when a scientist on Earth drops a hammer and a feather at the same time is that the hammer hits the ground before the feather</em>.
Momentum = mass x velocity 750x25 = 18750 kg-m/s.