Ans: Moles of Fe(OH)2 produced is 5.35 moles.
Given reaction:
Fe(s) + 2NiO(OH) (s) + 2H2O(l) → Fe(OH)2(s) + 2Ni(OH)2(aq)
Based on the reaction stoichiometry:
1 mole of Fe reacts with 2 moles of NiO(OH) to produce 1 mole of Fe(OH)2
It is given that there are:
5.35 moles of Fe
7.65 moles of NiO(OH)
Here the limiting reagent is Fe
Therefore, number of moles of Fe(OH)2 produced is 5.35 moles.
Answer : The balanced chemical equation will be:
(i) 
(ii) 
Explanation :
Balanced chemical equation : It is defined as the equation in which total number of individual atoms on the reactant side is equal to the total number of individual atoms on product side.
Part (i):
The balanced chemical equation will be:

This reaction is a single displacement reaction in which most reactive element (potassium) displaces the least reactive element (hydrogen) form their solution.
Part (ii):
The balanced chemical equation will be:

This reaction is a single displacement reaction in which most reactive element (zinc) displaces the least reactive element (magnesium) form their solution.
Answer:
Valence electrons or outer electrons are most important as they participate in bonding. The octet rule states that atoms gain, lose, or share valence electrons to have filled energy levels.. this gives atoms a stable configuration like that of the nearest noble gas.
Your answer is correct, I do not understand why it would be wrong.
The electron accepting tendency of an atom is known as the tendency of an atom to accept an electron. This is ranked on a scale of 0.7 to 3.98 and these species have the following values:
F: 3.98
O: 3.44
C: 2.55
Be: 1.57
Li: 0.98
Add a 8 kid and u are just adding