Seems right, but if it’s just asking for one i would pick B
Explanation:
Moles of metal,
=
4.86
⋅
g
24.305
⋅
g
⋅
m
o
l
−
1
=
0.200
m
o
l
.
Moles of
H
C
l
=
100
⋅
c
m
−
3
×
2.00
⋅
m
o
l
⋅
d
m
−
3
=
0.200
m
o
l
Clearly, the acid is in deficiency ; i.e. it is the limiting reagent, because the equation above specifies that that 2 equiv of HCl are required for each equiv of metal.
So if
0.200
m
o
l
acid react, then (by the stoichiometry), 1/2 this quantity, i.e.
0.100
m
o
l
of dihydrogen will evolve.
So,
0.100
m
o
l
dihydrogen are evolved; this has a mass of
0.100
⋅
m
o
l
×
2.00
⋅
g
⋅
m
o
l
−
1
=
?
?
g
.
If 1 mol dihydrogen gas occupies
24.5
d
m
3
at room temperature and pressure, what will be the VOLUME of gas evolved?
Answer:
H2
Explanation:
Critical temperature is the temperature above which gas cannot be liquefied, regardless of the pressure applied.
Critical temperature directly depends on the force of attraction between atoms, it means stronger the force of higher will be the critical temperature. So, from the given options H2 should have the highest critical temperature because of high attractive forces due to H bonding.
Hence, the correct option is H2.
Answer:
Calcium chloride react with aluminum to produce calcium and aluminum chloride. This reaction takes place at a temperature of 600-700°C.
CaCl2+F2 -> CaF2 + Cl2
C(5) + O2(g)
Hope this helped