Answer:
0.95L
Explanation:
Data obtained from the question include:
V1 (initial volume) = 1L
T1 (initial temperature) = 315K
P1 (initial pressure) = 1.10 atm
T2 (final temperature) = stp = 273K
P2 (final pressure) = stp = 1atm
V2 (final volume) =?
Using the general gas equation P1V1/T1 = P2V2/T2, the final volume of the system can be obtained as follow:
P1V1/T1 = P2V2/T2
1.1 x 1/315 = 1 x V2/273
Cross multiply to express in linear form.
315 x V2 = 1.1 x 273
Divide both side by 315
V2 = (1.1 x 273) /315
V2 = 0.95L
Therefore, the final volume of the system if STP conditions are established is 0.95L
Answer:
is a class of heavy military ranged weapons built to launch munitions far beyond the range and power of infantry firearms. This development continues today; modern self-propelled artillery vehicles are highly mobile weapons of great versatility generally providing the largest share of an army's total firepower.
Explanation:
it could explode
The electrons hold onto the nucleus because of the magnetism and the electricity. <span />
Answer:
The answer is C. the energy transferred between objects at different temperatures.
Explanation:
I did some research, I hope this helps.
Answer:
The pressure exerted by 66.0 g of CO₂ gas at -14.5°C that occupies a volume of 50.0 L is 0.636 atm.
How do we calculate pressure?
Pressure of any gas will be calculated by using the ideal gas equation as:
PV = nRT, where
P = pressure of gas = ?
V = volume of gas = 50L
R = universal gas constant = 0.082 L.atm/K.mol
T = temperature of gas = -14.5°C = 258.65 K
n is moles of gas and it will be calculated as:
n = W/M, where
W = given mass of CO₂ = 66g
M = molar mass of CO₂ = 44 g/mol
n = 66/44 = 1.5 moles
On putting values we get
P = (1.5)(0.082)(258.65) / (50)
P = 0.636 atm
Hence required pressure is 0.636 atm.
Explanation:
Hope This Helps
Have A Great Day
~Zero~