Answer:
wait no, THANK YOUU <333
Step-by-step explanation:
Answer:
D. 18.68
Step-by-step explanation:

Applying PEMDAS as order of operations.
Solving the exponents first ![[(\frac{2}{5})^2=\frac{4}{25}]](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B2%7D%7B5%7D%29%5E2%3D%5Cfrac%7B4%7D%7B25%7D%5D)

Multiplying ![[53\times \frac{4}{25}=8.48]](https://tex.z-dn.net/?f=%5B53%5Ctimes%20%5Cfrac%7B4%7D%7B25%7D%3D8.48%5D)

Dividing ![[27\div \frac{5}{3}=16.2]](https://tex.z-dn.net/?f=%5B27%5Cdiv%20%5Cfrac%7B5%7D%7B3%7D%3D16.2%5D)

Adding and subtracting.

Answer:
3/4
Step-by-step explanation:
In the inverse we replace the place of x by y .
![g(x) = \sqrt[3]{x} - 3 \\ \\ x = \sqrt[3]{y} - 3 \\ \sqrt[3]{y} = x + 3 \\ y = {(x + 3)}^{3} \\ y = {(x + 3)}^{2} (x + 3) \\ y = ({x}^{2} + 6x + 9)(x + 3) \\ \\ y = {x}^{3} + 6 {x}^{2} + 9x + 3 {x}^{2} + 18x + 27 \\ \\ y = {x}^{3} + 9 {x}^{2} + 27x + 27 \\ \\ \\ g(x)^{ - 1} = {x}^{3} + 9 {x}^{2} + 27x + 27](https://tex.z-dn.net/?f=g%28x%29%20%3D%20%20%5Csqrt%5B3%5D%7Bx%7D%20%20-%203%20%5C%5C%20%20%5C%5C%20x%20%3D%20%20%5Csqrt%5B3%5D%7By%7D%20%20-%203%20%5C%5C%20%20%5Csqrt%5B3%5D%7By%7D%20%20%3D%20x%20%2B%203%20%5C%5C%20y%20%3D%20%20%7B%28x%20%2B%203%29%7D%5E%7B3%7D%20%20%5C%5C%20y%20%3D%20%20%7B%28x%20%2B%203%29%7D%5E%7B2%7D%20%28x%20%2B%203%29%20%5C%5C%20y%20%3D%20%20%28%7Bx%7D%5E%7B2%7D%20%20%2B%206x%20%2B%209%29%28x%20%2B%203%29%20%5C%5C%20%5C%5C%20%20y%20%3D%20%20%7Bx%7D%5E%7B3%7D%20%20%2B%206%20%7Bx%7D%5E%7B2%7D%20%20%2B%209x%20%2B%203%20%7Bx%7D%5E%7B2%7D%20%20%2B%2018x%20%2B%2027%20%5C%5C%20%20%5C%5C%20y%20%3D%20%20%7Bx%7D%5E%7B3%7D%20%20%2B%209%20%7Bx%7D%5E%7B2%7D%20%20%2B%2027x%20%2B%2027%20%5C%5C%20%20%20%5C%5C%20%5C%5C%20g%28x%29%5E%7B%20-%201%7D%20%20%3D%20%20%7Bx%7D%5E%7B3%7D%20%20%2B%209%20%7Bx%7D%5E%7B2%7D%20%20%2B%2027x%20%2B%2027%20)
I hope I helped you^_^
<span>1) If the degree (the largest exponent) of the denominator is bigger than the degree of the numerator, the horizontal asymptote is the x-axis (y = 0).
<span>
2) If the degree of the numerator is bigger than the denominator, there is no horizontal asymptote.</span></span>