<span>The quadrilateral ABCD have vertices at points A(-6,4), B(-6,6), C(-2,6) and D(-4,4).
</span>
<span>Translating 10 units down you get points A''(-6,-6), B''(-6,-4), C''(-2,-4) and D''(-4,-6).
</span>
Translaitng <span>8 units to the right you get points A'(2,-6), B'(2,-4), C'(6,-4) and D'(4,-6) that are exactly vertices of quadrilateral A'B'C'D'.
</span><span>
</span><span>Answer: correct choice is B.
</span>
Answer:
29m+37?
Step-by-step explanation:
<em>Pemdas</em>
5m+3(8m+7)+4^2
Parentheses first: 5m+24m+21+4^2
Exponents next: 5m+24m+21+16
No multiplication or division so addition is last:
29m+37
These two can't add together because one has a variable.
The input of each of these functions is always an angle, and as you learned in the previous sections, these angles can take on any real number value. Therefore the sine and cosine function have the same domain, the set of all real numbers, \begin{align*}R\end{align*}