No, it can also be less than 1 depending on the class of the lever.
Answer:
The value is 
Explanation:
From the question we are told that
The velocity of the electron is 
The mass of the electron is 
Generally the deBroglie wavelength is mathematically represented as

Here h is the Planck'c constant with value 
So

=> 
1. Statement A is true.
When GTP is hydrolysed, the free energy of hydrolyses is used to power or drive reactions that are favourable energetically.
2. Statement B it true.
ATP is a complex chemical that gives energy for the activities in many living cells. During hydrolyses, chemical energy stored in the energy-rich phosphoanhydride is released. Hence its a common source of chemical energy in cells.
3. Statement C is false.
The hydrolyses of ATP to ADP in the presence of phosphate, releases one mole of ATP which is estimated to be -57Kj/mol not 14Kj/mol. Below is the equation;
ATP + H20 -----> ADP + Pi + Free energy.
4. Statement D is false.
GTP stands for guanosine triphosphate.
ATP stands for adenosine triphosphate
ADP stands for adenosine diphosphate.
Answer:
Explanation:
it is acceleration because we know that
F=ma
a=F/m
a=300N/25 kg
a=12 m/s^2
Answer:
Explanation:
25 mm diameter
r₁ = 12.5 x 10⁻³ m radius.
cross sectional area = a₁
Pressure P₁ = 100 x 10⁻³ x 13.6 x 9.8 Pa
a )
velocity of blood v₁ = .6 m /s
Cross sectional area at blockade = 3/4 a₁
Velocity at blockade area = v₂
As liquid is in-compressible
a₁v₁ = a₂v₂
a₁ x .6 m /s = 3/4 a₁ v₂
v₂ = .8m/s
b )
Applying Bernauli's theorem formula
P₁ + 1/2 ρv₁² = P₂ + 1/2 ρv₂²
100 x 10⁻³ x 13.6 x10³x 9.8 + 1/2 X 1060 x .6² = P₂ + 1/2x 1060 x .8²
13328 +190.8 = P₂ + 339.2
P₂ = 13179.6 Pa
= 13179 / 13.6 x 10³ x 9.8 m of Hg
P₂ = .09888 m of Hg
98.88 mm of Hg