1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sesenic [268]
3 years ago
11

The image shows a pendulum that is released from rest at point A. Shari tells her friend that no energy transformation occurs as

the pendulum swings between point B and point D.
What is the best response that Shari’s friend could make?

She could agree with Shari because the pendulum is at the same height and would have the same gravitational potential energy at both positions.

She could agree with Shari because the pendulum has the same amount of mechanical energy throughout its swing.

She could disagree with Shari because the pendulum converts kinetic energy into gravitational potential energy, then back into kinetic energy.

She could disagree with Shari because the pendulum converts gravitational potential energy into kinetic energy, then back into gravitational potential energy.

Physics
2 answers:
Masja [62]3 years ago
6 0
Is  D    the  right  answer
OlgaM077 [116]3 years ago
5 0

Answer:

She could disagree with Shari because the pendulum converts gravitational potential energy into kinetic energy, then back into gravitational potential energy.

Explanation:

The energy of the pendulum is constantly converted from gravitational potential to kinetic, and back.

In fact:

- the gravitational potential energy of the pendulum is given by:

U=mgh

where m is the mass of the pendulum, g is the gravitational acceleration, and h is the height of the pendulum above the ground

- The kinetic energy of the pendulum is given by:

K=\frac{1}{2}mv^2

where v is the speed of the pendulum.

Therefore, when it is at a higher position, the pendulum has a greater potential energy, while when it is at a lower position, the pendulum has a greater kinetic energy (because its speed is higher).

In this example:

- when the pendulum swings from B to C, part of its gravitational potential energy is converted into kinetic energy (because the height decreases but the speed increases), and when the pendulum goes from C to D, the kinetic energy is converted back into gravitational potential energy (because the height increases and the speed decreases)

You might be interested in
find the resistance of a multiplier connected with milliammeter of resistance 10 ohms with a deflection of 10 milliamperes and t
Murljashka [212]
The answer is 26 because you add
8 0
2 years ago
State the law of conservation of linear momentum using Newton's third law of deduce this ​
MArishka [77]

Answer:

Derivation of Conservation of Momentum

Applying Newton's third law, these two impulsive forces are equal and opposite i.e. is equal to the change in momentum of the first object. is equal to the change in momentum of the second object. This relation suggests that momentum is conserved during the collision.

Explanation:

Hope it helps!!!

7 0
2 years ago
A flashlight has a filament with a resistance of 9.8 Ohms. If the batteries provide 3.0 V, what is the current through the filam
Evgen [1.6K]

Current = (voltage) / (resistance)

Current= (3.0volts) / (9.8 ohms)  =<em>  0.306 ampere</em> = 306 milliamperes (mA)

7 0
3 years ago
A 0.305 kg book rests at an angle against one side of a bookshelf. The magnitude and direction of the total force exerted on the
tankabanditka [31]

Answer

given,

F_L= 1.52\ N

\theta_L= 31^0

mass of book = 0.305 Kg

so, from the diagram attached  below

F_L cos {\theta_L} + F_b sin {\theta_b} = m g

1.52 times cos {31^0} + F_b sin {\theta_b} = 0.305 \times 9.8

F_b sin {\theta_b} = 2.989 -1.303

F_b sin {\theta_b} = 1.686

computing horizontal component

F_b cos {\theta_b} = F_L sin {\theta_L}

cos {\theta_b} = \dfrac{F_L sin {\theta_L}}{F_b}

cos {\theta_b} = \dfrac{1.52 \times sin {31^0}}{1.686}

cos {\theta_b} = 0.464

θ = 62.35°

5 0
3 years ago
What is the wavelength of an earthquake wave if it has a speed of 11 km/s and a frequency of 7 Hz?
Alex73 [517]

length = speed/freq

11/7km


6 0
3 years ago
Other questions:
  • What is energy? a change that appears in an object when force is applied the property of a body that gives it mass the amount of
    12·2 answers
  • In a marathon race, chad is out in front, running due north at a speed of 4.04 m/s. john is 96 m behind him, running due north a
    8·1 answer
  • How many miles is 20,500 ft?
    6·1 answer
  • The​ time, t, required to drive a fixed distance varies inversely as the​ speed, r. It takes 9 hr at a speed of 20 ​km/h to driv
    15·1 answer
  • It is less expensive to mine minerals from deep-water deposits than from continental shelf deposits. Please select the best answ
    5·2 answers
  • In this section we considered a circular parallel-plate capacitor with a changing electric field. Describe the induced magnetic
    8·1 answer
  • Show that atmosphere exerts pressure.
    8·1 answer
  • Why is rust formed on iron
    11·1 answer
  • given a circuit powered at 12V with R1, R2, R3 respectively of 10,20,30 Ohm, determine R4 in such a way that the Wheatstone brid
    6·1 answer
  • A fighter plane is descending at 30 m/s. The pilot ejects, and the ejector seat accelerates him upwards at 120 m/s2 for 2 second
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!