<span>the empirical formula is C3H8O2
You need to determine the relative number of moles of hydrogen and carbon. So you first calculate the molar mass of CO2 and H20
Atomic weight of carbon = 12.0107
Atomic weight of hydrogen = 1.00794
Atomic weight of oxygen = 15.999
Molar mass CO2 = 12.0107 + 2 * 15.999 = 44.0087
Molar mass H2O = 2 * 1.00794 + 15.999 = 18.01488
Now calculate the number of moles of CO2 and H2O you have
Moles CO2 = 2.086 g / 44.0087 g/mole = 0.0474 mole
Moles H2O = 1.134 g / 18.01488 g/mole = 0.062948 mole
Calculate the number of moles of carbon and hydrogen you have. Since there's 1 carbon atom per CO2 molecule, the number of moles of carbon is the same as the number of moles of CO2. But since there's 2 hydrogen atoms per molecule of H2O, The number of moles of hydrogen is double the number of moles of H2O
Moles Carbon = 0.0474
Moles Hydrogen = 0.062948 * 2 = 0.125896
Now we need to determine how much oxygen is in the compound. Just take the mass of the compound and subtract the mass of carbon and hydrogen. What's left will be the mass of oxygen. Then divide that mass by the atomic weight of oxygen to get the number of moles of oxygen we have.
1.200 - 0.0474 * 12.0107 - 0.125896 * 1.00794 = 0.503797
Moles oxygen = 0.503797 / 15.999 = 0.031489
So now we have a ratio of carbon:hydrogen:oxygen of
0.0474 : 0.125896 : 0.031489
We need to find a ratio of small integers that's close to that ratio. Start by dividing everything by 0.031489 (selected because it's the smallest value) getting
1.505288 : 3.998095 : 1
The 1 for oxygen and the 3.998095 for hydrogen look close enough. But the 1.505288 for carbon doesn't work. But it looks like if we double all the numbers, we'll get something close to an integer for everything. So do so.
3.010575 : 7.996189 : 2
Now this looks good. Rounding everything to an integer gives us
3 : 8 : 2
So the empirical formula is C3H8O2</span>
Answer: I believe the 1st and 3rd reactions are better obtained through reference sources and the 2nd and 4th are easiest and safest to measure in the laboratory.
Explanation:
I am also working on this Pre-lab right now, and I looked back at the first question to help get my answer. In the first question (a), it is noted that ammonia gas and gaseous hydrochloric acid are both potentially dangerous in gaseous form. I saw that both the 1st and 3rd reactions contained noxious gases (I knew this because there was a (g) in both of these reactions). Using the knowledge from the first question that the noxious gases were potentially dangerous, I assumed that those reactions were the ones that are better obtained through the reference sources. The 2nd and 4th reactions did not contain any noxious gases, so I assumed those ones were easiest and safest to measure in the laboratory. Hope this helps!
In a neutral atom, the number of protons is equal to the number of electrons.
Given that the charge on the ion of the element is -1. This means that there is one electron more than the number of protons in the element.
The atomic number = Number of protons = 57 -1 = 56
Element with atomic number 56 is Barium.
Mass number of the element = Number of protons + Number of neutrons
= 56 + 80 = 136
So the identity of the species: 
Answer:
Hey there!
10000 gallons would be 37.85 cubic meters.
Let me know if this helps :)
A reaction in which oxidation numbers change is the answer! :D
☆ Dont forget to mark brainliest ☆