It is A. This is because, according to your diagram, the sunlight hits the moon, and it is blocking some of the sunlight to reach the Earth. This means that it is in between both of them.
Explanation:
It is given that two loads have 0.75 Ampere current each. And, they contain 2500 milli ampere per hour Ni-Cd battery.
As both the loads are connected in parallel. Hence, total current will be calculated as follows.
I = 
= 0.75 A + 0.75 A
= 1.5 A
= 
= 1500 mA
Relation between time and capacity of battery is as follows.
Capacity = Current × time (in hour)
therefore, time = 
= 
= 1.667 hr
Thus, we can conclude that the battery provide power to the load up to 1.667 hours.
Answer:
As the use of plants as carbon sinks can be undone by events such as wildfires, the long-term reliability of these approaches has been questioned. Carbon dioxide that has been removed from the atmosphere can also be stored in the Earth's crust by injecting it into the subsurface, or in the form of insoluble carbonate salts (mineral sequestration).
HOPE IT HELPS
TAKE CARE
Explanation:
Answer: That would be false because it is the contact between two layers representing a gap in the geologic record, usually from the erosion of the layers which would normally be expected to appear.
Explanation:
Have a good day
I hope this helps if not sorry :(
Stay motivated
ANSWER:
4 a) Specific elements have more than one oxidation state, demonstrating variable valency.
For example, the following transition metals demonstrate varied valence states:
,
,
, etc.
Normal metals such as
also show variable valencies. Certain non-metals are also found to show more than one valence state 
4 b) Isotopes are members of a family of an element that all have the same number of protons but different numbers of neutrons.
For example, Carbon-14 is a naturally occurring radioactive isotope of carbon, having six protons and eight neutrons in the nucleus. However, C-14 does not last forever and there will come a time when it loses its extra neutrons and becomes Carbon-12.
5 a)
→
5 b)
→ 
5 c)
→
(already balanced so don't need to change)
5 d)
→
5 e)
→ 
EXPLANATION (IF NEEDED):
1. Write out how many atoms of each element is on the left (reactant side) and right (product side) of the arrow.
2. Start multiplying each side accordingly to try to get atoms of the elements on both sides equal.
EXAMPLE OF BALANCING: