Answer:
50 g of K₂CO₃ are needed
Explanation:
How many grams of K₂CO₃ are needed to make 500 g of a 10% m/m solution?
We analyse data:
500 g is the mass of the solution we want
10% m/m is a sort of concentration, in this case means that 10 g of solute (K₂CO₃) are contained in 100 g of solution
Therefore we can solve this, by a rule of three:
In 100 g of solution we have 10 g of K₂CO₃
In 500 g of solution we may have, (500 . 10) / 100 = 50 g of K₂CO₃
Answer:
58.9g of SO2 is produced
8g of oxygen remains unconsumed
Explanation:
The burning of Carbon disulfide (CS2) in oxygen. gives the reaction:
CS2 (g) + 3O2 (g) → CO2 (g) + 2SO2 (g)
Molar mass of CS2 = 76.139 g/mol
Molar mass of O2 = 15.99 g/mol
Molar mass of SO2 = 64.066 g/mol
Number of moles of CS2 = 35g/ 76.139 g/mol =0.46 moles
Number of moles of O2 = 30g/15.999 g/mol =1.88 moles
From the chemical reaction
1 mole of CS2 react with 3 moles of O2 to give 2 moles of SO2
Thus 0.46 moles of CS2 reacts to form 2× 0.46 = 0.92 moles of SO2
Mass of SO2 produced = 0.92×64.07 = 58.9g of SO2 is produced
thus 0.46 moles of CS2 reacts with 3 × 0.46 moles of O2 which is =1.38 moles of O2
Thus oxygen is the limiting reactant with 1.88 - 1.38 = 0.496~~0.5 mole remaining
Or 8g of oxygen
58.9g of SO2 is produced
oxygen is the limiting
Answer: Option (C) is the correct answer.
Explanation:
An ion is defined as a specie which is formed when a neutral atoms tends to gain or lose an electron.
When a neutral atom gain an electron then it forms a negative ion whereas when a neutral atom tends to lose an electron then it forms a positive ion.
For example, a neutral fluorine atom on gaining an electron will form
ion. And, a sodium atom on losing an electron forms
ion.
When a group of atoms form ions then it tends to form polyatomic ions.
Thus, we can conclude that group of atoms that gains or loses electrons is called a polyatomic ion.
<u>Answer:</u> The entropy change of the ethyl acetate is 133. J/K
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

Given mass of ethyl acetate = 398 g
Molar mass of ethyl acetate = 88.11 g/mol
Putting values in above equation, we get:

To calculate the entropy change for different phase at same temperature, we use the equation:

where,
= Entropy change = ?
n = moles of ethyl acetate = 4.52 moles
= enthalpy of fusion = 10.5 kJ/mol = 10500 J/mol (Conversion factor: 1 kJ = 1000 J)
T = temperature of the system = ![84.0^oC=[84+273]K=357K](https://tex.z-dn.net/?f=84.0%5EoC%3D%5B84%2B273%5DK%3D357K)
Putting values in above equation, we get:

Hence, the entropy change of the ethyl acetate is 133. J/K
Answer: Acceleration and velocity
Explanation:
Newton's second law says that when a constant force acts on a massive body, it causes it to accelerate, i.e., to change its velocity, at a constant rate. In the simplest case, a force applied to an object at rest causes it to accelerate in the direction of the force.