Answer:
C) True. S increases with time, v₁ = gt and v₂ = g (t-t₀) we see that for the same t v₁> v₂
Explanation:
You have several statements and we must select which ones are correct. The best way to do this is to raise the problem.
Let's use the vertical launch equation. The positive sign because they indicate that the felt downward is taken as an opponent.
Stone 1
y₁ = v₀₁ t + ½ g t²
y₁ = 0 + ½ g t²
Rock2
It comes out a little later, let's say a second later, we can use the same stopwatch
t ’= (t-t₀)
y₂ = v₀₂ t ’+ ½ g t’²
y₂ = 0 + ½ g (t-t₀)²
y₂ = + ½ g (t-t₀)²
Let's calculate the distance between the two rocks, it should be clear that this equation is valid only for t> = to
S = y₁ -y₂
S = ½ g t²– ½ g (t-t₀)²
S = ½ g [t² - (t²- 2 t to + to²)]
S = ½ g (2 t t₀ - t₀²)
S = ½ g t₀ (2 t -t₀)
This is the separation of the two bodies as time passes, the amount outside the Parentheses is constant.
For t <to. The rock y has not left and the distance increases
For t> = to. the ratio (2t/to-1)> 1 therefore the distance increases as time
passes
Now we can analyze the different statements
A) false. The difference in height increases over time
B) False S increases
C) Certain s increases with time, v₁ = gt and V₂ = g (t-t₀) we see that for the same t v₁> v₂
To see if the insulation would affect the temp of whatever you are measuring. <span />
Answer: It states that the BCD equivalent would be 0001000100000000000100010001000100010000000100000001000000000001.
Answer:
Kelvin
Explanation:
fact as per the guideline given
Answer:
a) 3.33 ns
b) Water distance = 0.75 m
Glass distance = 0.66 m
Diamond distance = 0.41 m
Explanation:
We take the speed of light, c = m/s.
Speed = distance/time
Time = distance/speed
a)

t = 3.33 ns
b)
Refractive index, n = speed of light in vacuum / speed of light in medium





Thus, the distance traveled in the same time is numerically equal to the reciprocal of the refractive index.
For water n = 1.333
d = 1/1.333 = 0.75 m
For glass n = 1.517
d = 0.66 m
For diamond n = 2.417
d = 0.41 m