In order to calculate the number of atoms, we must first know the number of moles present. And
moles = (mass present) / (molecular mass)
Therefore, the moles of Mg present are
170 / 24 = 7.08
The number of atoms in a mole of substance is given by Avagadro's Number which is 6.02 x 10^23
Since there are 7.08 moles, there are:
7.08 * 6.02*10^23
= 4.26 * 10^24 atoms
Answer:
633 grams of sugar can be dissolved in 300 g of H₂O
Explanation:
Solubility is the measure of the ability of a certain substance to dissolve in another and form a homogeneous system. Solubility is then the maximum amount of a solute that a solvent can receive and is expressed by concentration units.
The rule of three or is a way of solving problems of proportionality between three known values and an unknown value, establishing a relationship of proportionality between all of them. That is, what is intended with it is to find the fourth term of a proportion knowing the other three. Remember that proportionality is a constant relationship or ratio between different magnitudes.
If the relationship between the magnitudes is direct, that is, when one magnitude increases, so does the other (or when one magnitude decreases, so does the other) , the direct rule of three must be applied. To solve a direct rule of three, the following formula must be followed:
a ⇒ b
c ⇒ x
Then:

You can apply the rule of three as follows: if by definition of solubility in 100 grams of H₂O there are 211 grams of sugar, in 300 g of H₂O how much sugar is there?

sugar= 633 grams
<u><em>633 grams of sugar can be dissolved in 300 g of H₂O</em></u>
Answer:
It is reactive because it has to gain an electron to have a full outermost energy level.
Explanation:
The electron configuration of oxygen is 1s2,2s2 2p4.
Oxygen is in group six in the periodic table so it has six electrons in its valence shell. This means that it needs to gain two electrons to obey the octet rule and have a full outer shell of electrons (eight).
Explanation:
Answer
Open in answr app
The rule used here is that the algebraic sum of the oxidation numbers of all the atoms a molecule is zero.
Al2O32× ( oxidation number of Al)+3× ( Oxidation number of O ) = 0
2× ( Oxidation number of Al) +3(−2)=0
2× ( oxidation number of Al) +6
∴ Oxidation number of Al =+3
The given question is incomplete. The complete question is:What is the relative atomic mass of a hypothetical element that consists isotopes in the indicated natural abundances.
Isotope mass amu Relative abundance
1 77.9 14.4
2 81.9 14.3
3 85.9 71.3
Express your answer to three significant figures and include the appropriate units.
Answer: 84.2 amu
Explanation:
Mass of isotope 1 = 77.9
% abundance of isotope 1 = 14.4% = 
Mass of isotope 2 = 81.9
% abundance of isotope 2 = 14.3% = 
Mass of isotope 3 = 85.9
% abundance of isotope 2 = 71.3% = 
Formula used for average atomic mass of an element :

![A=\sum[(77.9\times 0.144)+(81.9\times 0.143)+(85.9\times 0.713)]](https://tex.z-dn.net/?f=A%3D%5Csum%5B%2877.9%5Ctimes%200.144%29%2B%2881.9%5Ctimes%200.143%29%2B%2885.9%5Ctimes%200.713%29%5D)

Therefore, the average atomic mass of a hypothetical element that consists isotopes in the indicated natural abundances is 84.2 amu