0.10M HCN < 0.10 M HClO < 0.10 M HNO₂ < 0.10 M HNO₃
Explanation:
We are comparing acids with the same concentration. So what we have to do first is to determine if we have any strong acid and for the rest ( weak acids ) compare them by their Ka´s ( look for them in reference tables ) since we know the larger the Ka, the more Hydronium concentration will be in these solutions at the same concentration.
HNO₃ is a strong acid and will have the largest hydronium concentration.
HCN Ka = 6.2 x 10⁻¹⁰
HNO₂ Ka = 4.0 x 10⁻⁴
HClO Ka = 3.0 x 10⁻⁸
The ranking from smallest to largest hydronium concentration will then be:
0.10M HCN < 0.10 M HClO < 0.10 M HNO₂ < 0.10 M HNO₃
At equilibrium, the rate of the forward reaction is equal to the rate of the reverse reaction, and thus the concentrations of the reactants and products must be constant.
As can be seen, in the overall reaction we have in the reactants like in the second reaction and in the products. The is in the first reaction but as a reactant so we need to reverse that reaction: